
Page 1
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

2.0 Language Report

This section defines the Ubercode computer language. It describes the language semantics
(meaning), and the Appendix on Syntax Diagrams defines the syntax. The following language
elements are defined:

(2.1) Lexical Elements
(2.2) Program Structure
(2.3) Functions
(2.4) The Type Model
(2.5) Scalar Types
(2.6) Structured Types
(2.7) Program Statements
(2.8) Expressions and Operators
(2.9) Error Handling
(2.10) File Input and Output
(2.11) Windows and Menus
(2.12) Printing

2.1 Lexical Elements

These are the words, symbols and numbers that make up a program. The following lexical elements
are used, which are explained in more detail below:

•• keywords
•• symbols
•• identifiers
•• separators
•• numeric literals
•• string literals
•• comments

The language is not case sensitive, so keywords, symbols, and identifiers can be written in lower or
upper case. The end of line is a separator so a single lexical element may not be split across lines.
Statements, which consist of several lexical elements, may be split across several lines if needed.

Keywords

These are special reserved words used for parts of a program. They are usually connected with
declarations (such as const, type, var) or with control flow (such as if, else, end if). They are printed
in bold case in the manual, and there is a list in the Reserved Words topic in the Appendix.

Symbols

These are non alphanumeric characters (such as >=, +) or short words (and, not) which are usually
operators. There is a complete list in the Reserved Words topic in the Appendix.

Identifiers

These are the names used for all constants, types, variables, classes and functions in a program. The
maximum identifier length is limited to 20 characters. The first character must be a letter, and the
remaining characters can be letters, numbers or the underscore. For example:

Page 2
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 i123
 COUNT10
 InitWindowString
 very_long_identifier
 ZetaMax

Some identifiers such as Sqr, Ord and Val are part of the run time library. These are listed in the
Command Reference section. A class name has similar restrictions to an identifier, but is not allowed
to contain the underscore character. Classes are always stored in separate files and the class name
must be the same as its file name. For example the system class is stored in a file called "system.cls".
This helps the compiler find the class.

Separators

All the lexical elements have separators between them so the compiler can tell them apart. The
separating characters are the space (Chr(32)), tab (Chr(9)), and end of line characters (Chr(13)),
(Chr(10)). Separators are also called white space because this is how they appear when printed.

Literals

Literals are constant values which are written as an actual value without using an identifier. Numeric
literals are used for integer, fixed point and real type, and string literals are used for string types.

Numeric literals

These are numbers which can be of integer, fixed point or real type. An integer literal is a digit
sequence with an optional plus or minus sign in front:

 0
 100
 -3000
 +600000000

A fixed point literal is a literal of fixed type, which is written as a digit sequence with a fractional part
and an optional sign:

 -1.0
 +2005.235
 0.0

A real literal is a digit sequence with an optional fractional part, followed by an exponent. The
exponent follows the letter e:

 1e3
 6.023e+23
 -1.6E-32
 +1.6E+32

String literals

A string literal is a sequence of characters from the ASCII character set. The characters must be
printable characters which include any ASCII character between chr(32) and chr(126), the space to
the tilde. Characters from outside this range produce different effects on different computers and are
not portable. Strings are delimited by a double quote:

 "Hello World"
 "They said ""Hello"""
 "A"
 " "
 """"

Page 3
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

A quote in a string is represented by two adjacent quotes. Thus the last three string literals all have a
length of one. They contain the letter A (chr(65)), a space (chr(32)) and a double quote character
(chr(34)) respectively.

String literals cannot extend across multiple lines of a program because the end of the line is a
separator. Strings that span several lines of program text can be produced by joining up string literals
with the string concatenation operator (the + sign):

 "The quick brown fox " +
 "jumps over the lazy dog."

The predefined string NL means new line and represents the end of a line in a string. A string
containing NL is a multi line string and is useful for defining sentences of text. For example the
following multi line string contains nine lines:

 "I know you all, and will a while uphold" + NL +
 "The unyoked humour of your idleness." + NL +
 "Yet herein will I imitate the sun," + NL +
 "Who doth permit the base contagious clouds" + NL +
 "To smother up his beauty from the world," + NL +
 "That when he please again to be himself," + NL +
 "Being wanted he may be more wondered at" + NL +
 "By breaking through the foul and ugly mists" + NL +
 "Of vapours that did seem to strangle him." + NL

Comments

Comments are parts of the program that are ignored by the compiler and are of interest to human
readers. They are characters following the double slash // character pair and extending to the end of
the line. For example:

 //////////////////////////
 // this is a comment
 // so is this // and this
 //////////////////////////

Comment characters do not apply in a string. For example:

 "// This is not a comment" // but this is.

2.2 Program Structure

A program consists of one or more Ubercode source files. Each file contains a single class and is
compiled separately. The program must contain one main class and may optionally contain any
number of non-main classes. The following diagram shows a program consisting of three source files:

Page 4
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 Main class Myprog Non-main class Util1 Non-main class Util2
+-----------------------+ +-----------------------+ +------------------------+
class Myprog		class Util1		class Util2
uses Util1 Util2				
public function main()		function ...		function ...
...	
end function		end function		end function
end class		end class		end class
+-----------------------+ +-----------------------+ +------------------------+
 | | |
 | | |
 V V V
+--+
| Compile and link |
+--+
 |
 |
 V
 Executable file MYPROG
 +----------------------------------+
 | 01001100010010010100111001000111 |
 | 01001111001000000101001001010101 |
 | 01001100010001010101001100100001 |
 +----------------------------------+

This diagram shown the main class Myprog being combined with non-main classes Util1 and Util2 to
make the binary executable file Myprog. When Myprog is run by the operating system, the program
starts at function main in the main class.

Multiple Executable files

A large application may consist of many classes, and be too large to be compiled into a single
executable file. In such a case the application must be split up into multiple executable files, by
splitting the classes up into separate groups.

Executable files can call up other executable files with the Run statement and pass them values as
command line arguments. This is a remote procedure call which is similar to a normal function call,
except the called class is in a separate executable file. The next diagram shows two separate
programs, Myprog and Prog1. The executable file Myprog can call up Prog1.

 +------+ Executable file
 Main class Myprog | | ---+ Myprog
 +------+ | +------------+
 +------+ +----> | |
 Non-main class Util1 | | --------> | |
 +------+ +----> | |
 +------+ | +------------+
 Non-main class Util2 | | ---+
 +------+

 +------+ Executable file
 Main class Prog1 | | ---+ Prog1
 +------+ | +------------+
 +------+ +----> | |
 Non-main class | | --------> | |
 +------+ +----> | |
 +------+ | +------------+
 Non-main class | | ---+
 +------+

Class Structure

Page 5
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Ubercode programs are built from one or more classes, and each class is a file which is compiled
independently. Classes have a heading, a uses clause, constants, types and functions (which may be
public or private), and an ending. The structure of a class is shown next:

 // Class heading
 Ubercode 1 class ClassName

 // Uses clause
 uses OtherClassName ...

 // Types, constants, functions (public)
 public type TypeName ...
 public const ConstName:TypeName ...
 public function FunctionName(Parameters) ...

 // Types, constants, functions (private)
 private type TypeName ...
 private const ConstName:TypeName ...
 private function FunctionName(Parameters) ...

 // End of class
 end class

Ubercode 1 class. This specifies the class name and the version number. Class names always match
the file name, for example the class "myclass" must be stored in the file "myclass.cls".

Uses clause. This is a list of other classes on which this class depends. The effect of using another
class is to make its types, constants and functions available to this class. This class is known as a
client class of the other classes.

Public type, const, function. A class may declare public types, constants and functions for use by
other classes. These are also known as exported types, exported constants and exported functions.
When classes do this they define Abstract Data Types (ADTs) with the following parts [Martin 1986]:

•• The type. This is represented by the public types.
•• Operators. These are represented by the public functions.
•• Axioms. These define the ADT in terms of how the functions and types interact. The axioms are the
preconditions and postconditions used with the public functions.

Public types, constants and functions can be fully declared using the public keyword. Alternately they
can be declared using a prototype followed by a full declaration later on in the same class. The
prototypes allow public elements to be grouped near the top of the class, which makes it easier to see
what the class exports.

Private type, const, function. These are types, constants and functions declared locally by the class.
These private elements cannot be used by any other classes. They must be full declarations, therefore
types must fully specify the data type and any components, constants must specify their type and
value, and functions must contain a complete function body.

If types, constants and functions use neither the private or public keyword, they default to private
scope.

Global Variables are not allowed, because they make software harder to understand (see [Levy 1982,
Er 1985] in the Bibliography). Some writers [Feldman 1986] consider languages that allow them to be
poorly designed.

End class. This keyword marks the end of the class. There should not be any program code following
this point, although comments are allowed. Although it would be possible for the compiler to stop
compiling when it reaches the end of the source file instead of explicitly requiring the end class
keyword, use of end class is safer because it guards against the case where part of the class is
missing. When copying files, it is possible for the last part to be missing if the copy was unsuccessful.

Page 6
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Main class, Non-main class. A program consists of a main class, and any number of non-main
classes. Program execution always starts at function main in the main class. The difference between a
non main class and a main class is the latter declares a public function main().

Both types of class may declare any number of private and/or public types, constants and functions. A
main class must always declare main as a public function. A main class may not be inherited by other
classes, to avoid loops in the uses clause. (If a non-main class could inherit a main class, eventually
the non-main class would be inherited by the main class and the uses clause would form a loop).
Allowing public identifiers in a main class is a textual convenience which makes it easier to convert a
non-main class into a main class. In effect only function main() is inherited by the operating system.

Classes cannot be nested because the compiler processes one class at a time. The correct way to
use types, constants and functions from another class is to name it in the uses clause. A class is also
known as a compiland because it is compiled independently. Compiland simply means "a file which
can be compiled as a single element".

Uses clause

The uses clause is an optional part of a class that appears immediately after the class heading. It is
written as Uses name1 ... where name1 ... specifies one or more classes inherited by this class. This
class is a client of the other classes. All public types, constants and functions from the inherited class
are available in this class. This allows inheritance as required by object oriented programming, and
allows inheritance of utility functions from code libraries.

The compiler adds the public symbols of each used class to the symbol table of the class being
compiled. In line with [Booch 1991 p50], inheritance relationships are defined at the start of the class,
so they are available to all declarations within the class being compiled.

Declarations

A declaration is where a class, function, type, constant, variable, input, inout or output parameter is
given a name. After being declared, they can be referred to elsewhere by their name. For example, a
function is declared with its parameters, calculations and name. It is called up from elsewhere by use
of its name.

The scope of a declaration is the part of the program where the name can be used. This is also called
visibility because a name can only be understood if its declaration is visible. If a name is used outside
the scope of its declaration, or if its declaration is not visible which is the same thing, the program
cannot be compiled. The name is an undeclared identifier which causes compile time error
ERR_UNDECLARED_ID to occur.

Scope

All classes have three levels of scope, public scope, private scope and function scope:

Public scope. All identifiers declared as public, and all identifiers imported from used classes have
public scope. Identifiers in the run time library also have public scope, because they are in the system
class which is automatically inherited. Identifiers at public scope are visible through the entire class.

Private scope. All identifiers declared as private have private scope and can only be used in the
class they are declared in. Identifiers declared without a scope keyword default to private scope.

Function scope. All identifiers declared in a function, such as constants, types, variables, input, inout
and output parameters have function scope. These are also known as local variables and local
constants. The actual function name is declared at public or private scope, depending on whether the
public or private keyword was used at the start of the function declaration.

The following diagram shows the different scopes in a class MyClass. Public identifiers from the
System class and inherited class U are at public scope. Type T1 and function X are declared at public

Page 7
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

scope. Type T2 and function Y are declared at private scope:

 Ubercode 1 class MyClass
+--Public-scope-+
| // System class automatically included by the compiler |
| uses U // includes all public identifers from U |
| |
| public type T1[*]:list[*] of string[200] |
| |
| public function X |
| +-----------------------------Function-scope-+ |
	(in X1:integer)	
	var V:integer(1:10)	
	code ...	
	end function	
+--+		
+---Private-scope-+		
	private type T2[*]:list[*] of integer(0:MAXINT)	
	private function Y	
	+-----------------------------Function-scope-+	
		(in Y1:integer)
		code ...
		end function
	+--+	
+---+		
+---+
 end class

Identifiers must be declared before being used

All identifiers must be declared before being used. For example:

+--+
| const MAX : integer <- 100 |
| type T : record |
| data : string[MAX] |
| length : integer(0:MAX) |
| end record |
| var V : T |
+--+

The constant MAX, type T and variable V have to be declared in the order shown. The type uses the
constant so the constant comes first. The variable uses the type, so it comes after the type. Identifiers
can also be used from wider scope levels, which allows constants, functions and types to be inherited
from a used class. Compile time error ERR_UNDECLARED_ID occurs if identifiers are used that are
not declared.

Functions must be declared before being called. Functions are declared when the compiler finds either
a function prototype or the complete function declaration. Only public functions may use prototypes,
and all prototypes must have a full declaration later on in the same class. A function prototype is
known as a forward declaration in Pascal.

To make sure functions are declared before they are called, they can be ordered so they appear in the
source code before any call is made to them. If you prefer to order functions by category or
alphabetically, declare the functions using prototypes, then fully declare the functions in any order later
on in the class.

When using Recursive Functions the function header is the declaration, therefore the function is
correctly declared before the recursive call. In the case of Mutual Recursion it is not possible to fully
declare both functions before they are called. Therefore one or both function headers must be
declared using a function prototype.

Page 8
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Duplicate identifiers not allowed

An identifier can only be declared once at a given level of scope, or the compiler will report a Duplicate
Identifier error. For example, consider a class containing a constant and a function, both at private
scope. They cannot have the same name as they are both at the same scope level.

This rule is applied differently for record fields. A record field name can be used by other types at the
same scope level because it was not used as the name of the record type itself. However the field
names within a single record must be different. The next example shows record declarations that are
allowed:

+--------------------------------------+
| type X : integer |
| type REC1 : record |
| X : string[10] |
| end record |
| type REC2 : record |
| X : string[20] |
| end record |
+--------------------------------------+

The identifier X is used as a type name, then as a field in type REC1, then as a field in type REC2.

Also the Duplicate Identifier rule does not apply to constructor functions. These are functions that
return a value of a specified type, and that have the same name as the type. The following example
shows a type T and its constructor function:

+--------------------------------------+
| type T[*]:list[*] of string[100] |
| function T(... out result:T[*]) |
+--------------------------------------+

The type T and its constructor function T() have the same name, and the constructor has an out
parameter of type T.

Identifiers can be re-used at different scope levels

When an identifier is used at different scope levels, it always applies to the innermost declaration. This
is shown in the next example. Use of C in function X refers to the local declaration. Use of C in
function Y refers to the declaration at private scope, which is the only visible declaration:

+--Private-scope-+
| private const C:integer <- 1 |
| private type T[*]:string[*] |
| |
| private function X() |
| +-----------------------------Function-scope-+ |
	const C : real(0:1e9)	
	code	
	// C here refers to local declaration	
	end function	
+--+		
private function Y()		
+-----------------------------Function-scope-+		
	code	
	// C, T refer to private declaration	
	end function	
+--+		
+--+

This is called scope overriding and it makes possible the re-declaration of identifiers from an imported
class. Imported identifiers have public scope and are visible to the entire class that uses them. If these

Page 9
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

identifiers are re-declared at private scope or function scope, they override the ones imported from the
used class.

Type identifiers are an exception to the rule, since they cannot be re-declared at different levels of
scope. If a type T is declared with public scope, or is imported from another class, T cannot be re-
declared at any other scope level. The reason is the language uses the name equivalence type
system. If a function was declared using type T and T was re-declared, calls made to the function
using the new T would be passing data of the incorrect type. To avoid this, types cannot be re-
declared.

2.3 Functions

A function is a block of code with a name and in, inout and out parameters. Functions are allowed to
modify the inout and out parameters. There can be any number of in and inout parameters, but only a
single out parameter. Functions can access global constants and types, although nested functions are
not allowed. The following diagram shows the structure of a function, then the different parts are
explained:

+--+
| [public|private] [callback] function name(in parameters |
| inout parameters) |
| precond BooleanExpression |
| postcond BooleanExpression |
| type type-declaration |
| const const-declaration |
| var var-declaration |
| code |
| statement... |
| end function |
+--+

Function. This is the start of the function signature, also known as the function prototype or function
heading. The signature is the function name followed by the parameter types. The parameters are
enclosed in round brackets, and the brackets are left empty if there are no parameters.

The optional keywords public, private or callback may be used as part of the function heading.
When these keywords are used, they should be on the same line as the function heading. This helps
the Developer Environment when it automatically adds and removes window functions from classes.

Public/Private. If the function is to be made available to other classes, the public keyword must be
used in the function heading. If the function is not being made public, either the private keyword is
used, or neither keyword is used.

Public functions can also be declared in two stages. To do this, the function prototype is declared first,
then the full function declaration is made later on in the same class. When the function is fully declared
the heading must be identical. This means the same number of parameters, the same direction (in,
inout or out), the same types and the same parameter names.

Callback. This is an optional keyword used in the function heading. It specifies a window function
which handles events occurring in a window. Callback functions use specific parameters as described
in the How Windows work topic.

In, Inout. These optional elements are part of the function signature and indicate whether the
parameters following them may be modified. In parameters may not be modified within the function
and are constant. Inout parameters carry an initial value into the function, which may be modified by
the function, and which is returned when the function returns.

Out. The Out parameter is also optional. An Out parameter does not carry an initial value into the
function, but it may be modified within the function. The out parameter is the return value when the
function is called from an expression. Functions with an out parameter are not allowed inout
parameters, because function calls made from expressions are not allowed side effects. This is

Page 10
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

discussed under Pure Functions later on.

Precond, postcond. These optional elements are boolean conditions immediately following the
function heading.

A function's precondition is a boolean condition that should be true when the function is called. If
precondition checking is enabled, a test is made at run time to make sure. The preconditions act as
additional documentation about the function, make clear any assumptions made by the function about
its inputs, and make possible the design of abstract data types.

A function's postcondition is another boolean condition that should be true immediately the function
ends. If postcondition checking is enabled, a test is made at run time to make sure. The postcondition
documents what operations the function is capable of doing, assuming its preconditions are met.
Preconditions, postconditions and Abstract Data Types are covered in more detail in the section on
Object Oriented Programming.

Type, const, var. These are local declarations which are in scope for the entire function. The var
declaration sets up local variables which retain their value while the function is active. After the
function returns the local variables lose their values and are reset if the function is called again.

Code. This keyword marks the start of the instructions or statements of the function. Statements are
covered in more detail in the Program Statements section of the Language Report.

End function. This keyword marks the end of the function's statements. When program flow reaches
this point, the function returns and any inout or out parameters are made available to the caller. Note
the end keyword is also used at the end of statements and classes. This saves having to remember
special ending keywords.

Parameter Passing

When using a high level language you should not have to worry about whether to pass parameters by
reference, by value or by name. In Ubercode the only concern is whether a parameter is an input (in),
combined input and output (inout), or an output (out) of a function. These are shown next:

+---+
FUNCTION DECLARATION BLACK BOX FUNCTION CALL
function f(in i1 : integer integer +---------+
i2 : integer i1 ------->
inout o1 : real)
code ... integer
end function i2 ------->
real
o1 ------->
+---------+

function g(in i1 : integer integer +---------+
i2 : integer i1 ------->
out o1 : real)
code ... integer
end function i2 ------->
+---------+
+---+

The In parameters (i1 and i2 above) carry information into the function. They cannot have their values
altered within the function, so they cannot be assigned to nor passed to other functions for
modification. The Inout parameters (such as o1 above) can have their values altered and they carry
information in and out of the function. Any initial value they had at the start is available.

Instead of the inout parameters there can be a single Out parameter which carries information out of
the function. This cannot be used to pass data in, since it represents the function's return value in an

Page 11
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

expression. Here is the calling rule:

+--+
| functions with inout use a call statement |
e.g. call f(a,b,x)
functions with out use an expression
e.g. x <- g(a,b)
+--+

Function parameters and arguments

The words function arguments and function parameters are often used when discussing functions.
The function parameters follow the in, inout, or out keyword in the function heading and represent a
value used in the function. The arguments are the actual variables or values used in the code where
the function is called. Some languages refer to parameters as formal parameters and arguments as
actual parameters. The following table shows parameters and arguments:

+---------------------------------+------------------------+
| Parameters: i1 i2 o1 o2 | Arguments: a b x y |
|---------------------------------+------------------------|
function f(in i1 : integer	call f(a,b,x,y)
i2 : integer	
inout o1 : real	
o2 : real	
code ...	
end function	
+---------------------------------+------------------------+

A function has one set of parameters declared in its heading, and can be called from different places
with different arguments. The parameters in a function heading have the same format as variable
declarations. Any type name, including the standard scalar types, can be used for parameters. The
sizing notation in square brackets must be included if it is part of the type name. This allows strings,
arrays, sets, lists and tables of different sizes to be used as arguments.

The next example shows a two dimensional array type Tmat[*:*,*:*] used as a parameter type. The
function parameter does not use numeric bounds, which makes it possible to pass arrays of different
sizes to a function. In Pascal this is called a parametric array type, and in Ubercode the same
technique can be used with string, set, array, list and table types:

+--+
| type Tmat[*:*,*:*]:array[*:*,*:*] of real (-1e12:1e12) |
| |
| function Inverse(in m : Tmat[*:*,*:*] |
| i : integer) |
| code |
| ... |
| end function |
| |
| function Main() |
| var m1 : Tmat [1:10, 1:10] |
| m2 : Tmat [1:100, 1:100] |
| code |
| call Inverse(m1, 10) |
| call Inverse(m2, 100) |
| end function |
+--+

A function' s out parameter has a default out value which is returned by the function unless modified by
code inside the function. The default value of an out parameter is the same as the Default Value of a
variable of the same type if declared as a dynamically sized variable.

Since sets and arrays used as out parameters are initialized as empty resizable structures, you may
want to use Redim to change their size before returning from the function. When a function having a

Page 12
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

set or array out parameter returns, the function return value is a resizable set or resizable array with
the bounds most recently set by the called function. If you want to copy the returned value to a fixed
size variable it must have the same bounds. Run time error ERR_ARRAY_COPY occurs if you copy a
resizable array to a fixed size array with mismatching bounds.

Polymorphic functions

A polymorphic function is one that accepts different parameters of different types (see [Tennent 1981
p194] in the Bibliography). This is done by declaring multiple functions of the same name with different
parameters. This is also called overloading because a single function name is overloaded with several
different functions.

This does not cause a problem with duplicate identifiers being used at the same scope level, because
the compiler considers the parameters of a function to be a part of its name. In mathematical terms the
function' s parameters are part of its signature so functions of the same name with different parameters
are different. For example function Str shown next is overloaded three times, allowing it to be called
with an argument of integer, fixed point or real type:

+--+
| function Str(in i:integer out s:string[*]) |
| code |
| ... |
| end function |
| |
| function Str(in i:real out s:string[*]) |
| code |
| ... |
| end function |
| |
| function Str(in i:fixed out s:string[*]) |
| code |
| ... |
| end function |
+--+

When polymorphic functions are called, the actual function used is the one matching the types of the
arguments. For example, the following statement calls all three functions, first calling the integer
version of Str, then the real number version, then the fixed point version:

 s <- Str(100) + " " + Str(1e9) + " " + Str(10.25)

This example shows a problem when polymorphism is mixed with automatic type conversions
because it is not always clear which version of the polymorphic function should be used. This is known
as an ambiguous function call - for example does Str(100) mean "use the integer version of the
function on the integer 100", or "use the real version of the function on the integer 100 converted to a
real number"?

When resolving a call to a polymorphic function, the compiler searches first for a function signature
that matches exactly the supplied parameters. If this search was unsuccessful structured types are
converted into Generic Types and a new search is made using the modified type list. This gives the
following search order:

(1) Search for a version of the polymorphic function using the original arguments.

(2) If no matching function was found, convert any structured types to generic types.

(3) Search for a version of the polymorphic function using the generic types.

Polymorphism cannot work if the different functions have exactly the same parameters. This cannot
happen within a class, because it would have duplicate identifiers and would not compile. But this
could happen if two separate classes declared identical public functions and a client tried to use both
classes. The client class could not be compiled because both functions are at public scope and

Page 13
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

therefore clash.

Polymorphism also makes possible functions with optional parameters - this is done by overloading
several functions with the same name having different numbers of parameters. This is possible
because polymorphism allows the number of parameters to be changed as well as their types. An
example of this is with the Msgbox function. One version of the function allows the buttons in the
message box to be specified, but by leaving out the button parameter the message box defaults to a
single OK button.

Constructor functions

These are functions used for initializing variables of any type, except pre-defined types. When
declaring a type T it is possible to declare a constructor function for T also. The function has the same
name as the type, it may have any number of in parameters, and it must return type T as an out
parameter. The next example shows a type Tdata and its constructor function:

+--+
| type Tdata:record |
| name:string[50] |
| address:string[300] |
| species:string[50] |
| end record |
| |
| function Tdata(in name:string[*] addr:string[*] |
| out result:Tdata) |
| code |
| result.name <- name |
| result.address <- addr |
| result.species <- "earthling" |
| end function |
+--+

In the example shown, Tdata is the type and Tdata is also the constructor function. If a variable v of
type Tdata is declared, v can be initialized using the constructor function. For example the following
statement:

 v <- Tdata("John Smith", "123 High St")

will correctly initialize the variable v. Constructors are useful when classes declare public types, since
they make it easy to initialize variables using the type in other classes. Although it is not necessary to
use the constructor in the class declaring it (it is easy to use structured expressions instead), this does
not apply in other classes. The other classes cannot use structured expressions to initialize the type,
and must use the constructor function instead.

Iterator functions

These return a list or array as an out parameter and are normally called from a for each loop. The
loop steps a variable through each item in the returned list/array. The following example declares an
iterator function Weekdays that returns the days of the week, then uses the For each loop to print out
the days:

Page 14
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // Iterfunc.cls
 Ubercode 1 class Iterfunc

 type TstringList[*]:list[*] of string[20]

 function Weekdays(out days:TstringList[*])
 code
 days <- {"Monday","Tuesday","Wednesday","Thursday","Friday"}
 end function

 public function main()
 var day:string[*]
 code
 for each day in Weekdays()
 call Msgbox("Days", day + " is a weekday")
 end for
 end function

 end class

The example declares the TstringList[*] type returned by the iterator function. Weekdays is the actual
iterator function, which initializes the list and returns it as an out parameter. The For each loop in
function main prints each day in a message box. Iterfunc is a main class because it declares main as
a public function.

Iterator functions often return visual objects that represent user interface elements. The following
iterator functions are available in the run time library:

Applications returns all the running programs.

Controls returns all the controls used in a window. Both visible and hidden controls are included in the
list.

Printers returns all the connected printers. If the computer has no printers attached, the returned list is
empty.

Windows returns all the windows that are currently loaded. Both visible and hidden windows are
included in the list.

When iterator functions return visual objects, they should be used as soon as they are returned and
should not be stored for later use. The state of a visual object changes when windows are loaded or
unloaded, or when printer jobs are started or ended. A copy of a visual object is not valid after its state
changes. Functions that change a visual object' s state are Load / Unload for windows, and Startprint /
Endprint for printers.

Recursive functions

A recursive function is a function that calls itself. The next example shows a factorial function that calls
itself to calculate the next lowest number:

+--+
| function factorial(in n:integer out result:integer) |
| code |
| if n = 0 then |
| result <- 1 |
| else |
| result <- n * factorial(n-1) |
| end if |
| end function |
+--+

Recursion is a useful technique when a problem can be defined in terms of itself. If recursion occurs
unintentionally, or the recursive function has no exit condition, the program enters an infinite loop and

Page 15
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

a stack overflow occurs. Infinite recursion can also occur when using graphical events if the code
handling an event triggers the same event again.

Mutual recursion

Mutual recursion occurs when two Recursive Functions call each other. The next class shows
functions a and b which are mutually recursive:

 Ubercode 1 class Mutrec
 public function b()

 public function a()
 code
 call b()
 // other code
 end function

 public function b()
 code
 call a()
 // other code
 end function

 end class

Function b is declared first as a public prototype, to make it available to function a. After function a is
declared, function b is then fully declared. This order of declaration makes sure both functions are in
scope for each other. Mutual recursion is a complex technique occasionally needed by some
algorithms. As with normal recursion, there must be some condition under which the recursive
functions return, otherwise the program will enter an infinite loop.

Pure functions

A pure function is a mathematical function - a mapping of any number of inputs of any type into any
number of outputs. A particular set of inputs must always produce the same output whenever the
function is called. This is also called a deterministic function.

Pure functions make software more reliable and easier to maintain. A function can be fully understood
without reference to its calling environment, because global data and the order of calls cannot affect
how a function works.

Unfortunately functions are not pure in most computer languages. A random number generator is
impure - otherwise it would always give the same output for the same inputs and be a very predictable
random number generator! Other impure functions are those that find the time or date, amount of free
disk space, or read input from the program operator.

Functions in Ubercode are as close to pure functions as possible. To achieve this, Global Variables
and Pointer Type are not included in the language, and aliasing is restricted.

Aliasing

Aliasing occurs when different variables refer to the same storage location. It can happen if the same
variable is passed to a function more than once. For example:

 call f(a,a,b,b)

Aliasing is only allowed between inputs. It is not allowed between an in and inout parameter, nor
between two inout parameters. Assume we have a function fn, and variables a through to f, declared
as follows:

Page 16
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--+
| function fn(in i1 : integer |
| i2 : integer |
| inout o1 : integer |
| o2 : integer) |
| code ... |
| end function |
| |
| type vect[*:*] : array [*:*] of integer(1:1000) |
| |
| var a : integer(1:1000) |
| b : integer(1:1000) |
| c : integer(1:1000) |
| d : vect [1:10] |
| e : vect [1:10] |
| f : vect [1:10] |
+--+

The following function calls are legal. The first and second calls are allowed because the same
variable or array may be used for different inputs. The third and fourth calls are allowed because two
different variables c and d are used as the inout parameters:

+--+
| call fn(a, a, b, c) |
| call fn(d[1], d[1], e[1], f[1]) |
| call fn(a, b, c, d[c]) |
| call fn(a, b, c, d[a]) |
+--+

The following examples are not allowed, because a variable or variables are aliased, either by being
used as an in and an inout parameter, or by being used twice as an inout parameter:

+--+
| call fn(a, 1, a, b) // a is aliased |
| call fn(a, b, b, a) // a and b are aliased |
| call fn(a, b, c, c) // c is aliased |
| call fn(d[1], a, d[2], b) // array d is aliased |
| call fn(a, b, e[1], e[2]) // array e is aliased |
+--+

Aliasing is disallowed in this way to prevent in and inout values from being altered by other inout
values. If it was not disallowed, then an alteration to an inout variable could cause another input value
or inout variable to change as well. See [Tai 1982 p28] in the Bibliography for a detailed discussion.

2.4 The Type Model

This section describes the type model. The actual data types themselves are described in more detail
in later sections, under Scalar Types and Structured Types.

What is a Data Type?

In computing, it is important to classify values so we know what they represent. For example computer
languages distinguish between real numbers, integers and arrays of integers. The classifications are
called types and all values such as constants, variables, functions and expressions have a type. The
type denotes the set of allowed values, along with the permitted operations. For the concept of type in
Ubercode, see [Dahl 1972 p92-3] in the Bibliography:

(1) A type denotes the set of values which may be assumed by a constant, variable, function or
expression.

(2) Every value belongs to one and only one type.

Page 17
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

(3) The type of every value may be deduced from its form or declaration at compile time.

(4) All operators expect operands of a particular type and return values of a particular type. If a symbol
is applied to several different types, such as + which is used for addition of integers as well as real
numbers, the symbol denotes several different actual operators.

Data Types

The Data Types consist of six scalar types and six structured types. The scalar types are implemented
as primitive types on most computers, and the structured types are built out of other types. They are:

boolean type True and False values.
enum type Enumerations of defined values.
integer type Integer values.
fixed type Fixed point notation for financial calculations.
real type Floating point numbers.
string type Variable length strings.
record type Multiple components of different type.
union type Components selected by a tag value.
set type Sets of integers.
array type Multiple components of one type.
list type Multiple components selected by integer index.
table type Record components selected by a key value.

Type diagram

The following diagram shows how the data types are related:

+--+
| +--------------------+ +--------------------+ |
	Scalar types	All	Structured types			
	+---------------+	Types				
		Ordinal types			record	
		boolean			union	
		enum				
		integer				
	+---------------+					
	fixed					
	real					
	+------------------	----------	-----------------+			
		string	Dynamic	set		
			types	array		
				list		
				table		
	+------------------	----------	-----------------+			
+--------------------+ +--------------------+						
+--+

Scalar Types. These have a defined ordering (see [Wirth 1976 p5] in the Bibliography). They can be
compared with the =, /=, >, <, >=, <= operators.

Ordinal Types. These can be used as selectors in select statements and can be used with the Ord
function.

Structured Types. These are built from components of structured or scalar type. All structured types
are ultimately built from scalar types or type identifiers.

Dynamic Types. These change size as the program runs, and can be stored in memory or on disk. If
they are used as components of structured types, a maximum size must be given. Therefore dynamic
types can be dynamically sized, or variable to a fixed maximum size.

Page 18
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Ubercode uses strong typing which means all identifiers in a program have a single type which is
known at compile time. When the program runs, variables may not adopt values of other types
[Sebesta 1989 p122]. By using strong typing, many errors are found by the compiler, which reduces
debugging time [Rowe 1984 p56].

High Level Data Types

Ubercode provides high level data types such as lists and tables. These types can be of dynamic size,
so they can contain any number of components. List components are selected by a number and table
components are selected by one or more keys of any scalar type. These high level data types mean
programming is not needed for linked lists, balanced binary trees or hash tables.

Abstract Data Types

An Abstract Data Type is a new data type defined by an application for its own use. Abstract data
types are defined by their type name, operators, and the axioms describing the relationships between
the operators and the types (see [Martin 1986] in the Bibliography). An abstract data type is specified
as follows:

•• The type name. This is represented by a public type identifier.
•• The operators. These are represented by the public functions.
•• The axioms. These are represented by the precondition and postcondition of each public function.
They define the abstract data type in terms of how the functions and types interact.

Although the type name, operators, preconditions and postconditions are declared public, the internal
structure of the type and the operators are private. A client class may use the abstract data type by
declaring variables of its type. An abstract data type is represented as follows:

+--+
ABSTRACT DATA TYPE
Public: Type name
Defined operators
Preconditions and Postconditions
--
Private: Type structure
Functions which implement the operators
+--+

To construct an abstract data type, write a class with a public type, public functions that operate on the
type, and use preconditions and postconditions with the functions. Classes can inherit functions and
types from other classes, and the structure of inherited types is always hidden. Such a class meets the
requirements of an abstract data type used for object oriented programming (see [Ellis 1991 p65-66,
p187-188] in the Bibliography).

Type Declarations

Type declarations in Ubercode specify an unlimited range of values. For example when declaring an
integer, string or array type you don' t need to specify the range of integer values, the maximum length
of the string or the bounds of the array.

In other languages such as Pascal and Ada, types can be restricted by defining a subtype. Values of
the subtype also belong to the parent type. This violates a key principle of type theory that all values
belong to one type only (see [Harland 1982 p65-9] in the Bibliography). A good type model is at the
core of a computer language, therefore Ubercode rejects the notion of subtype.

This means strings are type compatible with other strings of different lengths, and array variables of
the same type can be declared with different bounds. This allows functions to be passed different
sized arrays and strings as inputs. This approach has been tried in other languages - see [Hennessy
1982] and [Ghezzi 1982 p76] in the Bibliography for more details.

Page 19
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Each type represents a set of values which is potentially infinite. A variable declaration limits the set to
a predefined range, so it can be represented in the computer' s memory. Some type declarations are
shown next:

+--+
| // Scalar types... |
| type |
| bool : boolean |
| days : enum (mon,tue,wed,thu,fri,sat,sun) |
| temperature : integer |
| money : fixed |
| epsilon : real |
| person[*] : string[*] |
+--+

+--+
| // Structured types... |
| type |
| rec : record |
| ComponentType |
| end record |
| un : union |
| ... |
| end union |
| numset[*:*] : set[*:*] |
| vector[*:*] : array[*:*] of ComponentType //1d |
| matrix[*:*,*:*] : array[*:*,*:*] of ComponentType //2d |
| lst[*] : list[*] of ComponentType |
| tab[*] : table[*] of ComponentType |
| ... |
| end table |
+--+

All these types can be used as function parameters and variable declarations. Variables of these types
may be copied to one another, loaded and saved from files, and converted to and from strings and
XML format.

All structured types (and strings) may be declared public and made available for other classes.
Structured types are allowed constructor functions for initializing variables declared of the type.
Constructor functions have the same name as the type, and return an instance of the type as an out
parameter.

The dynamic types (strings, sets, arrays, lists and tables) have a sizing notation - the square brackets
and asterisks. This notation is part of the type name, and must be included wherever the name is
used. For example if the one-dimensional array type vector[*:*] shown above is used as a parameter
type, it must include the [*:*] element. The compiler needs this so it knows the number of dimensions.

As with functions, public types can be declared in two stages. To do this, the type prototype is
declared first, then the full type declaration is made later on in the same class. This is useful for
grouping the public elements of a class at the top of the source file.

When public types are declared in two stages, the type' s full declaration is required before the type
can be used in other declarations. This is so the compiler knows what the type is. For example this is
correct:

 public type T[*] // Type prototype
 public type T[*]:string[*] // Full type declaration
 const X:T[*] <- "xyz" // Now we can use the type

and this is not:

Page 20
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 public type T[*] // Type prototype
 const X:T[*] <- "xyz" // Error, T is not fully declared
 public type T[*]:string[*] // T is fully declared here

The error occurs when T[*] is used to declare the constant X before T[*] has been fully implemented.
The compiler does not know what type T[*] is yet, so it cannot check the constant initializations and
error ERR_TYPE_UNIMPLEMENTED occurs. Types must be fully implemented, not only for constant
declarations, but for variables, components of other types, and function parameters as well.

To summarize, the key elements of the type system are:

+--+
| There are no subtypes. |
| |
| The size of a structure is not part of its type. |
| |
| The sizing notation is part of a type name. |
+--+

Var Declarations

When variables are declared they are given constraints which define the allowed range of values. This
also applies when variables are used as components of structured types. For example, integers, real
numbers and fixed point numbers are given a minimum and maximum value, and strings are given a
maximum length. These constraints ensure portable software because the compiler makes sure they
are satisfied on different computers (see [Tremblay 1985 p96] in the Bibliography).

As discussed in the section on Type Declarations constraints are not part of the data type. For
example, two string variables of different lengths are the same type. The type declares the
theoretically infinite set of values allowed, and the variable declaration lists the subset used. The
range is therefore a constraint on the values allowed for the variable.

Variable declarations and their constraints are shown in the next diagram. These are based on the
types shown previously:

+--+
| // Variables using scalar types... |
| var |
| b : boolean // implicit constraint |
| day : days(mon:sun) // enum constraints |
| temp : integer(1:100) // integer constraints |
| amount : fixed(0:10000.0) // fixed point constraints |
| eta : real(-1e9:1e9) // real number constraints |
| name1 : string[100] // string of max length 100 |
| name2 : string[*] // dynamically sized string |
+--+

+--+
| // Variables using structured types... |
| var |
| r : rec // implicit constraint |
| u : un // implicit constraint |
| hand : numset[1:52] |
| v1 : vector[1:10] // v1 and v2 |
| v2 : vector[1:100] // are the same type |
| mat1 : matrix[1:10, 1:10] // mat1 and mat2 |
| mat2 : matrix[1:100,1:100] // are the same type |
| l1 : lst[10] // fixed size list |
| l2 : lst[*] // dynamic sized list |
| t1 : tab[10] // fixed size table |
| t2 : tab[*] // dynamic sized table |
+--+

The constraints for variables of enum, integer, fixed point and real types are in round brackets, and

Page 21
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

constraints for variables of dynamic types (string, set, array, list, table) are in square brackets. There is
a reason for the different brackets. Round brackets contain the lower and upper limits on values that
can' t be sub-divided, such as integers and real numbers. Square brackets define the maximum
number of elements in variables that store repeated items. The constraints in square brackets are also
known as sizing notation since they define the number of elements in dynamic types.

When a variable of dynamic type is declared it may be constrained to a fixed maximum size by
replacing the asterisks with integer values, for example name1, list l1 and table t1 above. Or it may be
dynamically sized by leaving the asterisks in the declaration, for example name2, list l2 and table t2
above. A variable of fixed maximum size may vary in size up to the maximum declared bound, and a
dynamically sized variable can vary to any size, limited only by available memory.

For example the string variable name1 shown above has a fixed maximum size and may contain any
number of characters between 0 and 100 inclusive. As the number of characters varies, its length (as
returned by the length function) varies between 0 and 100. The string variable name2 is dynamically
sized and may contain any number of characters between 0 and the maximum memory block size.
Similarly its length will vary between zero and the maximum memory block size.

If the variable is a component of a structured type, it must be constrained to a fixed maximum size.
This is done by replacing the asterisks with integer values, and is required because all components
have a fixed maximum size in case the structured type is stored on disk.

To summarize, the key elements of variable declarations are:

+--+
| (1) Declarations of enum, integer, fixed and real types have |
| constraints in round brackets (). |
| |
| (2) Declarations of string, set, array, list and table types |
| have constraints in square brackets []. These declarations |
| can replace each asterisk from their type declaration with |
| a number, to declare a variable of fixed maximum size. |
| |
| (3) Declarations of boolean, record and union types have |
| implicit constraints. |
| |
| These declarations (1) to (3) can be used as component types. |
| |
| (4) Declarations of string, set, array, list and table types |
| can leave the asterisk in the type name. These declarations |
| are dynamically sized and cannot be used as component |
| types. |
+--+

Const Declarations

Constant declarations are used for declaring non modifiable values. The identifiers may be used
locally to a function, or within a class, or may be public for use by other classes. Constants do not
need constraints since they have a fixed value and cannot be modified.

+--+
| const |
| YES : boolean <- True |
| MAX_PATH : integer <- 255 |
| FIXNUM : fixed <- 1000.0 |
| REALNUM : real <- 6.023e+23 |
| STRTEXT : string[*] <- "Big" + "Cat" |
| LETTERS : set[*:*] <- [Ord("A"):Ord("Z")] |
+--+

The constant' s value is defined to the right of the arrow, as shown above. Constants can use a single
value, or may consist of other constant values combined by constant expressions. When constant
expressions are used, all parts of the value must be available when the program is compiled. By

Page 22
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

convention, constants use upper case, and integer constants that define the maximum sizes of strings
or other structures start with MAX_ as shown. These conventions are optional.

Default value

When variables are declared they automatically have an initial value or default value, which applies
until a new value is copied into the variable. This is for consistency when an uninitialized variable is
used in an expression. The default value of each type is as follows:

+--+
Type Default value
Boolean False
Enum Ordinal value of 0
Integer 0
Fixed point 0.0
Real number 0e0
String ""
Record,union All fields set to default
Set []
Resizable array Empty array with no elements
Fixed array All elements set to default
List,table Length of zero
+--+

Type Compatibility

Most computer languages define their Type Equivalence system, which is how they decide whether
two values are compatible types. Type compatibility is needed if one value is to be copied or
compared to another. Values passed to a function must be compatible with the corresponding function
parameters declared in the function header.

In Ubercode Name equivalence is used, so two variables are the same type if they were declared with
the same type name. The constraints are not taken into account because they are not part of the data
type. For example:

+--+
| type num : integer |
| vector[*:*] : array [*:*] of integer (1:MAXINT) |
| meters : real |
| yards : real |
| var n1 : num (1:10) // n1 and n2 are same type |
| n2 : num (1:100) |
| i1 : integer (1:1000) // i1 and i2 are same type |
| i2 : integer (1:10) |
| a1 : vector [1:10] // a1 and a2 are same type |
| a2 : vector [1:20] |
| len1 : meters (-1e12:1e12) // len1 and len2 are different |
| len2 : yards (-1e12:1e12) // types because of |
| // different type names |
+--+

In the declarations above, n1 and n2 are the same type because they are both num type. Also i1 and
i2 are the same type because they are both integer. Arrays a1 and a2 are the same type because they
are both vector type - the different bounds do not affect type compatibility. But len1 and len2 are
different types, because the type names meters and yards are different. This type difference is
important - if len1 contained 10 meters, copying len1 to len2 must be forbidden because 10 yards is
not the same as 10 meters. When declaring len1 and len2 it makes no difference that both are based
on real number type - the difference in names is the important factor.

The type compatibility rule is extended to make boolean, integer, fixed point, real, string and set types
compatible with their descendents. Thus if we have two types, one of which is boolean, integer,
fixed, real, string or set, and the other of which is a descendent type of the first, the types are

Page 23
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

compatible. This addition to the rule allows literals of boolean, integer, fixed, real, string and set type to
be copied to descendent types. Using the example code shown previously, the type num is compatible
with integer literals and the types meters and yards are compatible with real number literals. Therefore
the following are allowed:

 n1 <- 10
 len1 <- 1e3
 len2 <- 2e3

Without the extension to the compatibility rule these assignments would not be possible, as n1 is of
type num and 100 is of type integer, which are incompatible according to the strictest interpretation of
name equivalence. Thus to summarize the type compatibility rule used in Ubercode:

+--+
| (1) Types are compatible if they have the same type name. |
| (2) Types descended from boolean, integer, fixed, real, string or set |
| type are compatible with the same top level type. This allows: |
| type logical:boolean |
| text[*]:string[*] |
| var x:logical |
| y:text[*] |
| code x <- True |
| y <- "Hello" |
| (2b) Type identifiers based on enum type are compatible with the top |
| level type "enum". |
| (3) Fixed type, or a type descended from fixed, is compatible with |
| the top level type "integer". |
| (4) Real type, or a type descended from real, is compatible with |
| the top level types "integer" and "fixed". |
+--+

2.5 Scalar Types

The scalar types include boolean for true or false values, enum for an enumeration of values, integer
for whole numbers, fixed for fixed point decimal numbers, real for an approximation to the real
numbers and string for printable characters.

Scalar types have a defined ordering (see [Wirth 1976 p5] in the Bibliography) which means they can
be compared using the boolean relational operators. They are also known as primitive type because
they are implemented directly in the instruction set of most computers [Dahl 1972].

The ordinal types are a subset of scalar type, which includes boolean, enum and integer type. These
types have a unique predecessor and successor [Ghezzi 1982 p80]. They can be used as the selector
in select statements and with the Ord function. Variables of scalar type have these operators
available:

+--+
| = /= > < >= <= Relational. |
| <- Assignment. |
| Ord(v) Converts ordinal types to integer. |
| Str(v) Converts scalar type to a string. |
| Val(v) Converts string to a scalar type. |
+--+

When declaring types, constants and variables a useful naming convention is to use an initial capital T
for types (Tsometype), all capitals for constants (PI), and all lower case for variables. This convention
is followed for the examples in this chapter. However it is only a suggestion and programmers are free
to use any naming convention.

Boolean Type

The two values of boolean type are true and false. The boolean operators are and, or, and not which

Page 24
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

have their usual meanings as follows:

+--------------------------------------+
| a b | a and b a or b not a |
|----------+---------------------------|
F F	F F T
F T	F T T
T F	F T F
T T	T T F
+--------------------------------------+

A boolean type T, variable v and boolean constant C are declared:

+--------------------------------------+
| type T : boolean |
| var v : boolean |
| const C : boolean <- false |
+--------------------------------------+

Enum Type

The enum type is declared by listing or enumerating all the values up to a maximum enum value of
255. This allows 256 different values, each with an ordinal value from 0 to 255. These values are
available as constants of the type, and the scope of an enum constant is the same as the scope of its
type. To declare an enum type Tdays, enum variable v and enum constant C:

+--+
| type Tdays : enum (mon,tue,wed,thu,fri,sat,sun) |
| var v : Tdays (mon:sun) |
| const C : Tdays <- mon |
+--+

Integer Type

Integer type denotes the set of whole numbers. When a variable is declared of integer type, the set of
allowable values is included in the declaration. This does not create a subtype or a subrange, instead
the allowable values act as constraints on the variable. To declare an integer type T, integer variable v
and integer constant C:

+--------------------------------------+
| type T : integer |
| var v : integer (1:10000) |
| const C : integer <- 365 |
+--------------------------------------+

The standard arithmetic operators are available for integers, which are addition (+), subtraction (-),
multiplication (*), integer division (div), integer remainder (mod), and unary negation (Neg).

Fixed Type

Fixed type denotes a subset of numbers and fractions that can be represented exactly. Addition,
subtraction, and integer multiplication work exactly, making this type useful for financial calculations.
When a variable is declared of fixed type, it is constrained, which means the range of allowable values
is included in the declaration. To declare a fixed type T, variable v and fixed point constant C:

+--------------------------------------+
| type T : fixed |
| var v : fixed (0.0:1000.0) |
| const C : fixed <- 100.00 |
+--------------------------------------+

The standard arithmetic operators are available for addition (+), subtraction (-), multiplication (*),

Page 25
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

division (/) and unary negation (Neg).

Conversion operators are available to find the fractional part of a number (Frac), and to convert a
number to an integer (Int). This last operator works by rounding the fixed point number down to the
next lowest integer. If the number is already an exact integer value, it is not altered.

Real Type

The type real denotes a subset of real numbers, also known as floating point numbers. These
numbers are represented with a finite set of digits, so real number arithmetic is of limited accuracy.
The IEEE standard (see [IEEE 1985] in the Bibliography) is used which stores values from 5.0e-324 to
1.7e308, with 15 digits of accuracy. To declare a real type T, variable v and real constant C:

+--------------------------------------+
| type T : real |
| var v : real (-1e9:1e9) |
| const C : real <- 3.1415926 |
+--------------------------------------+

The standard arithmetic operators available are addition (+), subtraction (-), multiplication (*), division
(/) and unary negation (Neg). Other mathematical operators are squaring (Sqr), square root (Sqrt),
raising to a power (Pwr), the natural logarithm (Ln), the exponential function (Exp), and trigonometric
functions (Sin, Cos, Tan, Atan).

Conversion operators are used to convert a real number to its fractional part (Frac), to a fixed point
value (Fix), or to an integer (Int). The value returned by Int is the largest number less than or equal to
the real number. For example:

 Int(2.1) = 2
 Int(2.0) = 2
 Int(1.9) = 1
 Int(1.0) = 1
 Int(0.1) = 0
 Int(0.0) = 0
 Int(-1e-6) = -1
 Int(-0.1) = -1
 Int(-1.0) = -1
 Int(-2.0) = -2
 Int(-2.1) = -3

If the real number is already an exact integer value, it unaltered. Otherwise it is rounded down to the
next lowest integer. In some languages [Klerer 1991 p109] the int function is called the entier function.
Note that for negative real values, the int operator behaves differently from the trunc function of
Borland Pascal and the automatic float to int conversion of C.

String Type

The type string is used for characters from ISO 646 - the ASCII Character Set as shown in the
Appendix. When variables of string type are declared they can remain dynamically sized, or they can
be constrained to a fixed maximum size. Strings must be constrained when used as component type.
Declarations of a string type T, variables v1 and v2, and a string constant C are as follows:

+--------------------------------------+
| type T [*] : string[*] |
| var v1 : string[10] |
| v2 : string[*] |
| const C : string[*] <- "Hello" |
+--------------------------------------+

A string may contain lines of text separated by the new line character NL. This is called a multi line
string and is used for text. The ASCII null character (chr(0)) has no special meaning in a string. The
null character is important only if passing strings to programs written in C or C++ which expect zero

Page 26
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

terminated strings. String comparison uses the ASCII Character Set and stops at the first pair of
characters that do not match. For example:

 " " < "A"
 "A" < "B"
 "AA" < "AB"
 "100" < "200"
 "FRED" < "fred"
 "Fred" < "fred"
 "FRED" < "FREd"

For strings of unequal length, pairs of characters are compared until the end of the shorter string is
reached. If the strings are still equal up to this point, then the shorter string is the lesser of the two.
Thus:

 " " < " A"
 " " < " "
 "" < Chr(0)
 "AA" < "AAAA"
 "AA" < "ABAA"
 "AB" < "ABAA"
 "1000" < "200"
 "TIM" < "TIMMY"
 "TIMMY" < "TIMS"

Note the empty string "" is less than Chr(0). The empty string has a length of zero. Chr(0) contains the
single character with an ASCII value of zero. Therefore the string Chr(0) has a length of one, and is
greater than a string of length zero.

The string operators are concatenation (+), copying part of the string (Strcopy), counting the number of
lines in a string (Strcount), deleting part of the string (Strdel), finding a part of the string (Strfind),
converting strings to lower and upper case (Strlower and Strupper), getting a given line from a string
(Strline), making a string from a given character (Strmake), using a new string to replace part of the
old one (Strset), and finding the current length (Length).

Also there is a highly optimized function Strch which gets or updates a single character in a string.
This function makes it possible to write new string functions that are as efficient as the existing library
functions.

The bounds operators (Lbound and Ubound) can be used to find the size constraints of a string. The
lower bound of any string is 1. The ubound of a fixed maximum size string is the numeric bound used
in its declaration. The ubound of a dynamically sized string is not a meaningful value as the upper limit
depends on the available memory, therefore Ubound returns a negative value when used with a
dynamically sized string. The Isdynamic function checks whether a string is dynamically sized.

The Chr operator converts an integer into the corresponding single character string from the ASCII
character set. Some examples are shown below, where i is an integer with constraints (0:255) and s is
a string of length 1:

 Ord(Chr(i)) = i
 Chr(Ord(s)) = s
 Chr(65) = "A"
 Str(65) = "65"

The last two examples show how Chr creates a single character from a numeric ASCII value, whereas
Str converts any scalar type into a direct string representation.

2.6 Structured Types

The structured types are the record, union, set, array, list and table. These are built from other
types that have already been declared, which are the components of the structure and are therefore

Page 27
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

called component type. Any types may be used as component type. Structured types can be built to
any degree of complexity.

Operators available for all structured types are the test for equality (=) and assignment (<). Structured
types also have constructors to assemble them from their component types, selectors to access
individual components in the structure, and in some cases iterators to loop through their components.

 Structured Type Component Type
+-----------------+
| | |-----| constructor { +---+ +-+ +-+ }
|-----------| | <------------- { | | | | +----+ | +-+ }
| | | | { +---+ +-+ +----+ +---+ }
| +-----+ +-----|
| | | | |
|--+-----------| |
| | | | selector +-+
|--| +-------| -------------> | +-+
| | | | +---+
+-----------------+

Record Type

The record type groups information allowing multiple fields to be processed at once. It stores multiple
components of different types. Each component is called a field, and can be of any type. Fields
declared of dynamic type must have fixed numeric bounds, so that records have a fixed size and can
map onto fixed size components of disk files.

A record type T is declared by listing all the component fields f1 to fn which are the component types.
Types Tc1 to Tcn can be any type. A record type and a record variable are shown next:

+--------------------------------------+
| type T : record |
| f1 : Tc1 |
| f2 : Tc2 |
| |
| fn : Tcn |
| end record |
| var v : T |
+--------------------------------------+

Values of record type are initialized using a record constructor. This can use constructor functions or
structured expressions. Assume C1 to Cn are constants of type Tc1 to Tcn (shown above). A record
variable v can be initialized using a structured expression as follows:

+--------------------------------------+
| v <- {C1, C2, ... Cn} |
+--------------------------------------+

The record selector uses the dot notation to access and update individual fields. To select a
component, the record name is followed by a dot (.) and the field name:

+--------------------------------------+
| v.f1 |
+--------------------------------------+

Union Type

The union type groups different types so that an entire object can be dealt with as a single unit.
Although the union has multiple components, only one can be used at a time. This is the reason for
the name union - because it unites different types. The current active type is indicated by a tag value,
also called a discriminant. The tag value is an integer type declared as the first field.

Page 28
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

A union type T is declared with the tag field, followed by the component fields f1 to fn. The
components are of constrained component type Tc1 to Tcn. A union type and union variable are
shown next:

+--+
| type T : union |
| tf : integer(1:n) |
| with T |
| case 1 => f1 : Tc1 |
| case 2 => f2 : Tc2 |
| ... |
| case n => fn : Tcn |
| end with |
| end union |
| var v : T |
+--+

In the type declaration each case label declares the component fields belonging to one tag value.
Although the example above shows each case label as having one component field, a case label may
have zero or more fields. The label is always required even if there are no fields. The tag value must
be:

•• An integer value greater or than equal to zero.
•• In a continuous increasing sequence, without gaps between values. If there are no component fields
belonging to a tag value, the case n => element must still be used but the declaration can be left out.
•• A value that is available at compile time, which means it must be an integer literal or integer constant
declared in the class being compiled. Constants declared in other classes are not allowed as their
value is not available at compile time (the value is private to the other class).

Values of union type are initialized using the union constructor. This can use constructor functions or
structured expressions. A structured expression uses a tag value constant followed by the
components belonging to the tag value. Assume a constant C1 is declared of type Tc1 shown above.
The union variable v is initialized using a structured expression as follows:

+--------------------------------------+
| v <- {1, C1} |
+--------------------------------------+

As another example the value {2,C1} is invalid and would cause a compiler error, because the
component C1 of type Tc1 does not match the tag value 2. The only way of changing a union' s tag
value is with a constructor, or by assigning another union variable of the same type.

The union selector uses a With statement to access the component fields f1..fn that match the current
tag value.

+--------------------------------------+
| with v |
| case 1 => |
| case 2 => |
| ... |
| case n => |
| end with |
+--------------------------------------+

The compiler ensures that only field f1 is accessed in case 1, f2 in case 2 and so on. This approach to
unions is both efficient and secure. All type checking is done at compile time, and no run time checks
are needed to ensure the accessed components match the tag value. It is completely safe because
the tag value and component fields always match. This makes it impossible to convert a variable of
one type to another by declaring them as fields of a union, and relying on both fields being stored at
the same memory location.

This approach can be compared to other languages. A union is called a variant record in Pascal, and
the insecurities in the variant are described in [Ghezzi 1982 p84-5] in the Bibliography. The union type

Page 29
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

in C has no tag field at all.

Set Type

The set type stores integer elements. The ordering of the elements is not significant so for example
the set [1,3] is the same as [3,1]. Elements are not stored multiple times, so adding 3 to the set [1,3]
would still produce [1,3]. Declarations of a set type T, set variables v1 and v2 and a set constant C are
shown:

+--------------------------------------+
| type T [*:*] : set [*:*] |
| var v1 : T [1:10] |
| v2 : T [*:*] |
| const C : T [*:*] <- [1,2,3:5] |
+--------------------------------------+

Individual values of a set are separated by commas, and a range of values is given by separating the
two values with a colon.

When a set type T[*:*] is declared, it is not constrained to hold any particular range of integers, as
represented by the asterisks in the type name. A resizable set variable can be declared by leaving the
asterisks in the declaration (v2 above), or the variable can be constrained to a fixed range by replacing
the asterisks with numeric bounds (v1 above). When used as components of other structures, sets
must always be constrained. At run time the set bounds determine the lowest and highest integers that
can be stored. The bounds are obtained with the Lbound and Ubound functions, and a resizable set
has bounds as defined with Redim, whereas a fixed size set has the bounds defined in its declaration.
The lower bound is always less than or equal to the upper bound, and both bounds are between
MINBOUND and MAXBOUND.

Sets are initialized using the set constructor. This can use constructor functions or a list of elements in
brackets. For example the set variable v1 declared above is initialized by specifying its elements as
follows:

+--------------------------------------+
| v1 <- [1, 3, 5, 7, 9] |
+--------------------------------------+

The set operators are set intersection (*), set union (+), set difference (-), set membership (in) and set
complement (Complement). The set difference operator removes all elements in the second operand
from the first and returns the result. For example [1:4] - [3,5] = [1,2,4].

The complement operator makes a set contain all the elements it did not contain previously. Thus if v1
shown previously = [1,3,5,7,9] then Complement(v1) = [2,4,6,8,10]. The complement is always
calculated without changing the set bounds, so if v1 were dimensioned [1:20] and had the value
[1,3,5,7,9] then Complement(v1) = [2,4,6,8,10:20]. A set expression has bounds that change at run
time, so the complement of a set expression produces an indeterminate result. This is because the
bounds within which the set bits are complemented are changing. Thus Complement([]) is
indeterminate. To avoid problems with the complement of set expressions, the complement function
should be used with variables or constants, such as v1, v2 and C shown previously.

The Lbound and Ubound functions are used to find the lowest and highest possible elements of a set.
For a dynamically sized set these are the bounds most recently defined with Redim, and for a fixed
maximum size set these are the bounds defined in the declaration. The Redim function changes the
bounds of a resizable set, and Isdynamic tests whether a set is resizable.

When using the set intersection, union or difference operator in an expression, the resulting set will
always be large enough to hold both of the operand sets. This process is known as set widening
because the result set is widened to allow for the bounds of both operands.

Array Type

Page 30
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

The array ... of ... type declares an array type which stores one or more components. All components
of a given array are the same type. Arrays have a fixed number of dimensions, and when selecting
components an integer index is needed for each dimension. An array type and array variable are
declared as shown:

+--+
| type Tvector[*:*] : array [*:*] of component-type |
| Tmatrix[*:*,*:*]: array [*:*,*:*] of component-type |
| var v1 : Tvector [1:5] |
| v2 : Tvector [*:*] |
| mat : Tmatrix [1:3,1:4] |
+--+

The asterisks in the type names Tvector[*:*] and Tmatrix[*:*,*:*] are part of the names, and must be
included whenever the types are used for function parameters or for declaring other types, variables or
constants. Each *:* is a dimension of the array and represents a pair of integers for the lower and
upper bounds.

A resizable array variable can be declared by leaving the asterisk in the declaration (such as v2
above), or the array variable can be constrained to a fixed size by replacing the asterisks with numeric
bounds (such as v1 above). When used as components of other structure, arrays must always be
constrained.

Arrays are initialized using the array constructor. This can use constructor functions or structured
expressions. Assume constants Cij (1≤i≤3 and 1≤j≤4) are declared using the component type of the
array. The array variable mat shown previously can be initialized with a structured expression as
follows:

+--------------------------------------+
| mat <- {{ c11 , c12 , c13 , c14 }, |
| { c21 , c22 , c23 , c24 }, |
| { c31 , c32 , c33 , c34 }} |
+--------------------------------------+

Individual components are accessed and updated with the array selector. This is written in the usual
way using square brackets:

+--------------------------------------+
| mat[i,j] |
+--------------------------------------+

At run time the array bounds determine the range of array index values that are allowed. If an array
index outside the bounds is used, this is known as an array subscript error, array index error, or out of
bounds reference, and run time error ERR_ARRAY_REF occurs. The bounds of an array are obtained
with the Lbound and Ubound functions. A dynamically sized array has the bounds most recently set
with Redim. An array of fixed maximum size has the bounds it was declared with. Each lower bound of
an array is always less than or equal to its upper bound, and all array bounds are between
MINBOUND and MAXBOUND. The Redim function changes the bounds of a resizable array, and
Isdynamic finds whether a given array is resizable.

More complex arrays are normally updated with for loops and a selector, to avoid writing large
constructors. Some more complex array types are declared below. Type Tarray1[*:*] is a one
dimensional array, each element being a 10 character string. Type Tarray2[*:*] is a one dimensional
array, each element being a list of integers:

+--+
| type Tlist[*] : list[*] of integer (0:1000) |
| type Tarray1[*:*] : array[*:*] of string[10] |
| type Tarray2[*:*] : array[*:*] of Tlist[10] |
+--+

Page 31
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

List Type

The list ... of ... type declares a list which stores zero or more components of the same type.
Components are selected using an integer value between one and the number of components. When
variables of list type are declared they can be dynamically sized or they can be constrained to a fixed
maximum size. Declarations are shown next:

+--------------------------------------+
| type T[*] : list[*] of Tc |
| var list1 : T[*] |
| list2 : T[10] |
+--------------------------------------+

Tc is the component type of the list. To declare dynamically sized list variables the asterisk is left in the
type name, as shown by list1 above. For lists of a fixed maximum size the asterisk is replaced with a
numeric upper bound, as shown by list2 above. The fixed size list list2 can vary in size up to ten
components and is allowed as component type, whereas list1 is not. However both variables shown
are type compatible, because a constraint is not part of a variable' s type.

Lists are initialized using the list constructor. This can use constructor functions or structured
expressions. Assume C1 to C3 are constants of type Tc (shown above). List variables list1 and list2
can be initialized using structured expressions as follows:

+--------------------------------------+
| list1 <- {C1, C2, C3} |
| list2 <- {C1, C2, C3} |
+--------------------------------------+

After these assignments both lists contain three components, and have a length of three. However the
fixed maximum size list list2 could only fit another seven components, whereas list1 is dynamically
sized and could fit many more.

A list can only have components added or removed at its end. This makes sure external lists are
efficient when their components are stored on disk. Listadd appends a new component to the end of a
list and Listdel deletes the component at the end of the list. These are the only operators that change
the number of components in the list. Other list operators are used for finding the current length of the
list (Length), getting a component of the list (Listread), and updating a component of the list (Listwrite).

The Lbound and Ubound operators find the size constraints of a list. The lower bound of any list is 1.
The ubound of a fixed maximum size list is the bound it was declared with. The ubound of a
dynamically sized list is not a meaningful value as the maximum number of elements depends on the
available memory, therefore Ubound returns a negative value when used with a dynamically sized list.
The Isdynamic function checks whether a list is dynamically sized.

List Iterator

This is a loop which reads through all the components in a list. The next example loops through list1
and loads each component into the buffer variable. The buffer must be type compatible with the
component type of the list:

+--------------------------------------+
| for i from 1 to length(list1) |
| call Listread(list1, i, buffer |
| buffer <- ... |
| call Listwrite(buffer, i, list1) |
| end for |
+--------------------------------------+

The effect of the for loop and the call to Listread is to read through all the list components starting
from the first. If the for loop was intended to update the list, the code in italics shows how to modify
the buffer and write back the modified component. When iterating through the list, the index variable (i

Page 32
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

above) should be between 1 and the length of the list, otherwise error ERR_LIST_REF occurs.

Table Type

The table ... of ... type stores zero or more components, similar to an indexed database file. The
components are of record type and the table has indexes to order the records.

A table type is declared by specifying its component type which is a record. Then the indexes are
declared using the index keyword, and are numbered from 1 upwards. The indexes contain fields
from the component record. An index with multiple fields is called a segmented index or a composite
key. Declarations are shown next:

+--+
| type Tabrec : record |
| f1 : TC1 |
| f2 : TC2 |
| f3 : TC3 |
| f4 : TC4 |
| end record |
| type Ttable[*] : table[*] of Tabrec |
| index 1 (f1,f2) |
| index 2 (f1,f3) |
| end table |
| var table1 : Ttable[*] |
| table2 : Ttable[100] |
| buffer : Tabrec |
+--+

In this example the table' s component type is the record Tabrec, and the actual table type is Ttable[*].
The table has two segmented indexes, index 1 of fields f1 and f2, and index 2 of fields f1 and f3.
Fields f1, f2 and f3 must exist in Tabrec and must be scalar type. Two table variables are declared,
table1 and table2. The variable table1 is dynamically sized because of the asterisk in its declaration. It
can store any number of records. The variable table2 is fixed maximum size and can store up to 100
records.

In database terminology the fields f1 to f4 are the table columns and the records of data are the table
rows. The number of columns is fixed and the number of rows can vary. Assume we have values Cij
where i is the row number (1≤i≤n) and j is the column number (1≤j≤4). A table is represented as
follows:

 +-----------+-----------+---+
 | Index 1 | Index 2 | Data |
 |-----------+-----------+---|
 | f1 | f2 | f1 | f3 | Type TC1 | Type TC2 | Type TC3 | Type TC4 |
 |=====+=====*=====+=====*===========+===========+===========+===========|
row 1 | c11 | c12 | c11 | c13 | c11 | c12 | c13 | c14 |
 |-----+-----+-----+-----+-----------+-----------+-----------+-----------|
row 2 | c21 | c22 | c21 | c23 | c21 | c22 | c23 | c24 |
 |-----+-----+-----+-----+-----------+-----------+-----------+-----------|
 | ... | ... | ... | ... | ... | ... | ... | ... |
 |-----+-----+-----+-----+-----------+-----------+-----------+-----------|
row n | cn1 | cn2 | cn1 | cn3 | cn1 | cn2 | cn3 | cn4 |
 +-----------+-----------+---+

Tables are initialized using the table constructor. This can use constructor functions or structured
expressions. Assume Cij are values as shown in the previous diagram. The table variable table1
shown previously is initialized using a structured expression as follows:

+--------------------------------------+
| table1 <- {{c11, c12, c13, c14}, |
| {c21, c22, c23, c24}, |
| |
| {cn1, cn2, cn3, cn4}} |
+--------------------------------------+

Page 33
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Individual records in a table can be read and written with a table selector. If we have index key values
key1 and key2 having types Tc1 and Tc2, we can read and write from the table variable table1 as
follows:

+--+
| call Tabread(table1, 1, {key1,key2}, buffer) |
| call Tabwrite(buffer, 1, {key1,key2}, table1) |
+--+

The call to Tabread reads from the table variable table1, using index 1, finds the record matching
{key1,key2} and reads it into the buffer variable. The buffer variable must be type compatible with the
component type of the table. The call to Tabwrite writes back the buffer variable, using index 1 and
{key1,key2} to find the record in table1 that is being updated. The key values must identify a record
that is in the table, otherwise error ERR_TABLE_REF occurs. Tabread and Tabwrite have an optional
found parameter that returns FALSE if the record does not exist. This is useful when it is not known
whether the record exists.

Note that Tabwrite finds an existing record and updates it, it does not add a new record to the table.
The indexed fields in buffer and the values {key1,key2} must all locate the same existing record,
therefore buffer.f1 should equal key1 and buffer.f2 should equal key2. If this condition is not met error
ERR_TABLE_UPDATE occurs.

Other table operators add a new record (Tabadd), delete a record (Tabdel), find the number of records
in a table (Length), count the records between two index values (Tabcount), search for a specific
record (Tabfind) and recreate the table indexes (Reindex).

The Lbound and Ubound functions get the size constraints of a table. The lower bound is always 1.
The ubound of a fixed maximum size table is the numeric bound used in its declaration. The ubound of
a dynamically sized table is not a meaningful value as the maximum number of elements depends on
the available memory, therefore Ubound returns a negative value when used with a dynamically sized
table. The Isdynamic function checks whether a table is dynamically sized.

Tables can be updated as the program runs by adding and deleting records, and the indexes are
updated automatically. The records in the table can only be accessed by the indexed fields. This is the
difference between lists and tables - data in a list is accessed by its position through the list which is
an integer, and data in a table is accessed by one or more keys of any scalar type. The order of
insertions and deletions is not important, because the table is always ordered according to its indexes.

Table Iterator

The table iterator is used for processing all the records in a table. In the following example the iterate
loop reads the entire table, loading each record into the buffer variable. The record can then be
processed and copied back to the table:

 iterate buffer through table1
 buffer <- process(buffer)
 call Tabwrite(buffer, 1, {buffer.f1,buffer.f2}, table1)
 end iterate

The buffer variable is a record with the same component type as table1 and the effect of the iterate
loop is to set buffer equal to each record in table1 in turn, and to carry out the commands in the loop.
The process function represents code using the buffer variable. Fields in buffer may be modified,
except that if Tabwrite is called to write the buffer variable back to the table, fields that are part of an
index must not be modified. If indexed fields are modified, error ERR_TABLE_UPDATE occurs.

There is another form of table iterator which uses Tabfind instead of the iterate loop. Tabfind is called
using the FIRST argument to get the first record from the table, then following calls use NEXT to get
the remaining records. This process is repeated until there are no more records. For example:

Page 34
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 call Tabfind("FIRST", table1, 1, buffer, status)
 while status /= 0
 // use buffer here but don't chan ge the indexed fields
 call Tabfind("NEXT", table1, 1, buffer, status)
 end while

The call to Tabfind(FIRST) reads the first record using index 1. If table1 is not empty buffer stores the
first record and status returns a non-zero value. Fields in buffer can be updated, although indexed
fields must not be modified if the buffer variable is to be written back to the table. The call to
Tabfind(NEXT) reads the next record from the table and updates the status variable. The while loop
continues until status returns zero meaning there are no more records.

Usually it is simpler to use the iterate loop instead of the Tabfind loop. The performance of the two
loops is similar.

2.7 Program Statements

The statements of a language are the actual computations of a program. Statements are used for
calculations and for controlling the flow of control through a program. In Ubercode they go between
the code keyword and the end of a function:

+-------------------------------------- +
| function f(...) |
| // declarations ... |
| code |
| // statements ... |
| end function |
+-------------------------------------- +

The following list shows all the statements in Ubercode:

 if statement
 select statement
 loop statement
 while statement
 for loop
 for each loop
 iterate loop
 with statement
 assignment statement
 call statement
 run statement

Ubercode uses self bracketing statements which means all statements have keywords that mark
where they start and finish. Compound statements, enclosed with "begin" and "end" in Pascal or in
curly brackets in C, are not needed.

The semicolon is not required as a terminator symbol at the end of a statement. Semicolons were
originally used as statement terminators to make it easier to write the compiler (see [Perelgut 1988] in
the Bibliography). However the art of compiler writing has improved, and it is no longer necessary to
complicate a language with unnecessary syntax. Multiple statements may be placed on a line, and the
end of a line of text has no significance, other than being treated as white space.

If statement

The if statement is used to make decisions. It evaluates the expression following it, then does the
statements following the then if the expression is true, otherwise it does the statements between the
else and end if. Here is a simple if statement:

Page 35
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 if a then
 statement
 end if

Simple if/else statement:

 if a then
 statement
 else
 statement
 end if

Multiple if statement:

 if a then
 statement // a is true
 elseif b then
 statement // b is true
 end if

Multiple if/elseif/else statement:

 if a then
 statement // a is true
 elseif b then
 statement // b is true
 else
 statement // a is false and b is false
 end if

The compound if statement is also known as a multi way if statement.

Select statement

The select statement chooses one of several options. The program tests the condition following the
select keyword, jumps to one of the case labels or the else label, then continues from end select.
The condition following select is called the selector expression and must be enum type, integer type,
string type or control type. The syntax is as follows:

 select expression
 case c1[:c2] [,...] => statement
 else => statement
 end select

If the selector expression does not correspond to a case option, the statement following else is
executed. If the selector expression does not correspond to a case option and there is no else part,
the program continues running from after end select. The constants c1 to c2 are the case labels and
they must be the same type as expression. Case labels are constants, or a range of constants
separated by a colon, or several constants (or pairs) separated by commas.

When case labels are separated by commas, the expression is tested against each case label. When
case labels are separated by colons, the expression is tested to see if it falls between the case label
values using ' >=' and ' <=' for enum, integer and string expressions. When control objects are
separated by colons, the expression is tested by checking if it is in a control array formed by the two
control objects.

The select statement is equivalent to the case statement or switch statement found in other
languages. Note that a break statement is not needed at the end of the code belonging to a case
label.

Loop statement

Page 36
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

The loop statement is used to repeatedly do a statement until a condition is satisfied. The ones below
will loop until expression is true. Here is a loop that exits from the top:

 loop exit when expression
 statement
 end loop

Loop to exit from the bottom:

 loop
 statement
 exit when expression
 end loop

Loop to exit from the middle:

 loop
 statement
 exit when expression
 statement
 end loop

The first loop is equivalent to while...do... of Pascal and while {...} of C. There is also a While
statement which is described later on. The second loop is equivalent to repeat...until and do...while.
The third loop has no equivalent in Pascal or C, but is nonetheless very useful. For example, consider
a list of items to be processed by a loop. The items are processed by:

(1) Initial calculations to prepare the item.

(2) See whether the prepared item is acceptable.

(3) If so, do detailed calculations based on the item.

The loop would be of the form:

 loop
 prepare_next_item
 exit when item_not_acceptable
 calculations
 end loop

While statement

The while statement is used to repeat a group of statements any number of times.

 while expression
 statement
 end while

The expression is of boolean type. When the flow of control reaches while the boolean expression is
tested and if true the statement part is executed. When end while is reached the loop returns to the
while part and tests expression again. The loop continues running until the expression tests false.

An exit when command can be used to force early exit of the while statement. However this is usually
unnecessary since the expression following while provides control over the loop.

For loop

The for loop executes some statements a given number of times, and is used when the number of
iterations is known beforehand. Each time around the loop, the loop counter is increased or
decreased.

Page 37
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 for i from start { to } finish
 { downto }
 statement
 end for

At the start of the loop, the integer expressions start and finish are evaluated and the loop counter is
given the value of start. If i is less than or equal to finish then statement is done, i is incremented to the
next value and then tested again. The loop continues until i is greater than finish. A downward
counting for loop is possible by replacing to with downto.

The loop counter i must be an integer variable and its value must not be changed by statements in the
loop because it is incremented and decremented automatically. The start and finish expressions are
evaluated once only at the start of the loop, so if they are changed in the loop this does not affect the
number of iterations. The value of the finish expression is saved; after the loop i will have this value
regardless of how many times the loop was executed. Thus the final value of loop counters is always
the value of the finish expression. For example:

 var
 s:string[*]
 i:integer(1:1000)
 start:integer(1:1000)
 code
 s <- "Hello"
 start <- 1
 for i from start to Length(s)
 s <- s + "."
 start <- start * 2
 end for
 end function

The loop will be executed five times. After the loop, s = "Hello.....", start = 32, length(s) = 10 and i = 5.
The reason why the counter has the value 5 at the end of the loop because it always takes the value
of the finish expression which was calculated as 5 when the loop started.

An exit when command can be used to force an early exit. The next example searches the string s for
an asterisk:

 s <- "*hello"
 ptr <- 0
 for i from 1 to Length(s)
 ptr <- i
 exit when Strcopy(s,ptr,1) = "*"
 end for
 if (ptr > 0) and (Strcopy(s,ptr,1) = "*") then
 // found it!
 end if

The separate variable ptr is needed because i will have the value 6 when the loop finishes. Remember
that at the start of the loop, the start and finish expressions are evaluated. Regardless of how the loop
comes to an end, i always has the value of the finish expression after the loop ends.

For each loop

The for each loop carries out one or more statements for each element returned by an iterator
function. Iterator functions return a value of list or array type. The iteration is safe against code inside
the loop that changes the number of returned items or the order of iteration.

 for each element in iterator([params])
 statement
 end for

Iterator is the iterator function and Params represents its input parameters, if any. Element must be

Page 38
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

type compatible with the components of the iterated list or array.

At the start of the for each loop, the iterator function is called and the returned list or array is stored for
the duration of the loop. Then the element variable is set equal to the first item in the returned list and
the statement part of the loop is executed. After statement program flow returns to for each and
element is set equal to the second item in the list. This process continues until all items in the list have
been iterated. If the iterator returned an empty list statement will not be executed.

Because the loop gets the list of iterated items once only at the start of iteration, it is useful when there
is a danger of the code in the loop interfering with the next element to be obtained from the list.

Some languages have a collection type which is an unordered group of objects of the same type. A
collection is equivalent to a list type used with a for each loop. The for each loop guarantees that
when processing the objects in the collection, it does not interfere with the order of the objects.

Iterate loop

The iterate loop processes the records in a table. The loop makes it possible to choose which records
are processed, and the order of the processing.

 iterate recvar through tab
 [where expression]
 [order by (field,...) [asc|desc]]
 statement
 end iterate

The loop sets recvar equal to each record in the table, then runs the statement part of the loop.
Recvar is the table record which must be type compatible with the components of the table variable
tab. The optional where command modifies the loop so it only processes records for which the where
condition is true. The optional order by command determines the order of iteration and must be
followed by a list of fields (field) that correspond to one of the table' s indexes. The order by command
may include the asc or desc commands to process the record in ascending or descending order.

In the statement part of the loop the indexed fields of recvar should not be changed. This makes sure
the records are processed in the correct order, because the indexed fields are used for finding the
next record. The statement part will not be iterated at all if the where condition returns false for all the
table records, or if tab contains no records.

The following example declares a table, adds some records to it, then uses the iterate loop to select
some of the records:

Page 39
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // Testiter.cls
 Ubercode 1 class Testiter

 public function main()
 type
 Tdata:record
 name:string[20]
 year:integer(1:9999)
 end record
 Ttab[*]:table[*] of Tdata
 index 1 (name,year)
 end table
 var
 tab:Ttab[*]
 buffer:Tdata
 code
 call Tabadd({"Richard", 1972},tab)
 call Tabadd({"James", 1976},tab)
 call Tabadd({"Ronald", 1980},tab)
 call Tabadd({"Ronald", 1984},tab)
 call Tabadd({"George", 1988},tab)
 call Tabadd({"William", 1992},tab)
 call Tabadd({"William", 1996},tab)
 call Tabadd({"George", 2000},tab)
 call Tabadd({"George", 2004},tab)
 iterate buffer through tab where buffer.name >= "R"
 call Msgbox("Iterate", Str(buffer))
 end iterate
 end function

 end class

The type Tdata is the record structure used for the table. Type Ttab[*] is the table type declared with a
segmented index consisting of the name and the year fields. The index has to be segmented because
the same name may be added to the table twice over (for example there are two Ronalds and two
Williams) so we need the extra field to avoid a duplicate record which is not allowed. The records are
added to the table variable tab by calling the Tabadd function. Finally the iterate statement loops
through all records in the table, selecting those with a name alphabetically following "R". The values
printed out are:

+--------------------------------------+
| Richard 1972 |
| Ronald 1980 |
| Ronald 1984 |
| William 1992 |
| William 1996 |
+--------------------------------------+

If records are added or deleted while iterating a table, this may change the number of records iterated
through. Unlike the For each loop, iterate does not make a temporary copy of the table before starting
because this would be inefficient for a large table. Instead iterate does a search using the index and
loads up the next record each time around the loop. As with the for loop, an exit when command can
be used to make the loop come to an early end.

With statement

The with statement is used with variables of union type and ensures the only fields that are modified
are the ones belonging to the current tag value. Also it is a shorthand way of referring to the fields of a
union.

 with union-var
 case 1 => statement
 case 2 => statement
 case 3 => statement
 end with

Page 40
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

The with statement has a case label for each tag value of a union. The tag values are defined when
the union type is declared. For example the with statement shown above is for a union declared with
tag values of 1 to 3. When the with statement is compiled the compiler checks there is a case option
for each tag value. Also it checks each case option only modifies union fields having the same tag
value.

Also the with statement allows the fields of union-var to be used without being qualified. In the with
statement, all occurrences of identifiers that match fields of union-var are interpreted as union fields
even if there is an identifier of matching name.

At run time the with statement examines the tag value of union-var, then jumps to the case option
matching the current tag value. This ensures the only union fields modified are those corresponding to
the current tag value. The with statement does not change the tag value itself, to do this assign other
union values or union structured expressions to the entire union variable.

The with statement is not allowed to have ranges of case labels (case 1:3 etc.). This is because in the
union' s declaration each tag value has different fields, so a with statement with a range of labels could
potentially modify fields not associated with the current tag value. Also the with statement does not
allow a case else option for the same reason - case else would be a catch-all for multiple tag values
meaning the program could modify fields not associated with the current tag value. Case ranges and
case else both defeat the purpose of a union, which is that the fields and tag value are always
modified consistently.

Assignment statement

This statement copies one variable to another of the same type. Two variables are the same type if
they were declared with the same type name - see the section on Type Compatibility for more details.
The assignment symbol is the left pointing arrow. This symbol was chosen because in languages such
as Basic beginners sometimes write:

 5 = a

intending to copy the value 5 to the variable a. In Ubercode this is written:

 a <- 5

to make it clearer. However you cannot write 5 -> a. The value being assigned to must be modifiable,
so it must be declared as a var, inout or out parameter or a component of one of these. Values
declared as const or in parameters cannot be modified. Assignment is allowed with variables of any
type, no matter how complex their structure. For example:

 type Ttab[*] : table[*] of ...
 ...
 end table
 Tmat[*:*,*:*] : array[*:*,*:*] of real(-1e9:1e9)
 var s1 : string [*]
 s2 : string [5]
 t1 : Ttab [*]
 t2 : Ttab [100]
 m1 : Tmat [1:10,1:10]
 m2 : Tmat [1:10,1:10]
 m3 : Tmat [1:100,1:100]
 code
 t1 <- t2 // OK
 m1 <- m2 // OK

After an assignment v1 <- v2, v1 always equals v2 by definition. When assigning values of dynamic
types it is possible for the left hand variable to overflow, for example if it has fixed bounds and the
value being assigned is larger. Assignments to dynamic types are dealt with as follows.

Strings, lists and tables of fixed maximum size. The assignment will change the length of the left

Page 41
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

hand variable, but it will never change the maximum size (the upper bound), thus the left hand variable
must be large enough to fit all the elements from the right hand side. If there are too many elements,
one of the run time errors ERR_STRING_FULL, ERR_LIST_FULL or ERR_TABLE_FULL will occur.
For example if the fixed maximum size string s2 shown above is assigned s2 <- "123" the Length is 3,
the Ubound is 5 and the assignment is successful. If the string is assigned s2 <- "123456" the Ubound
is still 5 and error ERR_STRING_FULL occurs.

Strings, lists and tables that are dynamically sized. The left hand variable will be resized to match
the number of elements in the right hand value. After the assignment the lengths of the left hand and
right hand values are equal.

Assigning to sets. If the left hand variable is resizable it is resized to match the bounds of the right
hand side value. The set bitmap is then copied, after which the left hand variable has the same
bounds as the right hand value and the two are equal. If the left hand variable is of fixed size it does
not need the same bounds as the right hand value, as long as all the elements of the right hand set fit
in the left hand set. If right hand elements do not fit error ERR_SET_COPY occurs. Assignment never
changes the bounds of a fixed size set.

Assigning to arrays. If the left hand variable is resizable it is resized to match the bounds of the right
hand value. Copying then takes place, after which the left hand variable has the same bounds as the
right hand value and the two are equal. If the left hand variable is of fixed size its bounds must equal
the bounds of the right hand, otherwise error ERR_ARRAY_COPY occurs. For example if the fixed
size arrays m1 and m3 shown previously were assigned m1 <- m3, or m3 <- m1, error
ERR_ARRAY_COPY occurs because the left hand array in both cases has different bounds and
cannot be resized. Assignment never changes the bounds of a fixed size array.

Assignment and type compatibility. The Type Compatibility rules cannot guarantee that two
variables can be assigned. For example when assigning variables of the same dynamic type it is
possible for there to be an overflow if the left hand variable has a fixed maximum size. In the array
example shown previously, the assignment m1 <- m3 caused the run time error ERR_ARRAY_COPY
because the bounds of m1 and m3 are different. This is true even though the arrays are the same type
and could both be passed to a function as a parameter of type Tmat[*:*,*:*].

The reason is the size of a dynamic variable is not part of its type, so assignment errors may occur if
one dynamic variable is too large to be copied to another. This situation occurs in other languages, for
example in C, Basic and Pascal if you declare a string large enough to store 5 characters and copy a
larger string into it, either an error occurs or the two values are not equal after the assignment. Some
versions of Basic avoid an error by only copying the characters that fit, but this means the strings are
unequal after assignment.

Shallow copy and Deep copy. In most computer languages structured types are stored using
multiple blocks of memory. This may be a conscious decision of the programmer, who has for example
decided to store an array of structures in the form of an array of pointers to separately allocated blocks
of memory, instead of storing the structures in a single large block. Or this may occur because of the
internal workings of the language being used.

When structured values are stored in multiple memory blocks, there are two ways the assignment
operator could work. Consider the case of an array of structures as described previously, if we have
two variables x and y being assigned x <- y. Variable x is currently empty and y is an array of pointers
to separate blocks of memory which contain the structures.

The first assignment method is shallow copy which copies the top level block of memory only. It works
by allocating a block of memory for x and copying y' s pointers into it. This assignment is valid because
the variables are equal after assignment. However if y is modified later on in the program, x will be
indirectly modified as well since x' s structure pointers point to y' s structures. There is also a problem
that when y is finished with, we can' t immediately free the memory as it may still be in use by x. This
problem is normally dealt with by garbage collection which means memory is not reused until all
references to it are dead.

The second assignment method is deep copy which copies all the blocks of memory used by the

Page 42
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

variable. In the case of x and y we allocate blocks of memory for x and for all the structures, then copy
each of y' s structures into the new blocks allocated for x, then set up x' s pointers to point to its own
structures. This method of assignment is also valid because the variables are equal after assignment.
There is no danger of aliasing or floating pointers because x and y do not share memory, so they can
be copied and deallocated independently.

Both these assignment methods have approximately the same performance, as although the deep
copy is slower when doing an assignment, it does not need to pause at regular intervals for garbage
collection.

Ubercode uses deep copy for all its assignments, to avoid aliasing problems and the need for garbage
collection. To compare with other languages, C++ can use either method depending on how the
assignment operator is written and Eiffel uses shallow copy. Visual Basic uses deep copy, for example
in the case where you declare an array of structures (user defined types).

Call statement

A call statement transfers control to a function. Functions in Ubercode perform the same tasks as
functions in C, procedures and functions in Ada and Pascal, and subroutines in Fortran. The called
function must be in the same class as its caller, or it must be declared public in an inherited class.

When the function call is reached, the in parameters are evaluated. Then if precondition checking is
active, the precondition is tested. Program flow then reaches the function, and the function performs
its calculations. When the function returns, the postcondition is tested if postcondition checking is
active. Finally the program continues with the next statement after the function call. Any inout or out
parameters are available at this point.

Refer to precond and postcond expressions for more information about the effects of precondition and
postcondition testing.

All functions must be declared before being called. Functions are declared by (1) importing the
function from an inherited class or (2) using a public function prototype or (3) fully declaring a private
or public function. If an undeclared function is called, compiler error ERR_UNDECLARED_ID will
occur. The reason for declaring functions before calling them is so the compiler can check the function
arguments are correct.

Some algorithms use Recursive Functions that call themselves. A single recursive function satisfies
the rule that functions are declared before use, because the function heading declares the function
and the call occurs after this declaration. In more exotic cases an algorithm may use Mutual
Recursion, which occurs when several recursive functions call each other. In this case, one or both
functions must be declared using a public prototype.

Function calls can be made by a call statement or from an expression. However if the function
heading has an out parameter, it must be called from an expression because the out parameter is the
function result. For example:

+--+
| call f(a,b,x) function f(in i1:integer i2:integer |
| inout o1:real) |
| code ... |
end function
x <- g(a,b) function g(in i1:integer i2:integer
out o1:real)
code ...
end function
+--+

Functions normally have Inout parameters or an Out parameter so that data may be returned from the
function. There can only be a single out parameter, but any number of inout parameters are allowed.
A function cannot have both. This table summarizes the calling rule:

Page 43
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--+
| functions with inout use a call statement |
e.g. call f(a,b,x)
functions with out use an expression
e.g. x <- g(a,b)
+--+

Run statement

The run statement calls up external program files. Control is transferred to the called program, and
when this finishes control resumes from after the run statement. The caller remains in memory and the
called program only stays in memory while being run. The syntax of run is:

 run name(param)

The name element is the executable file to run in the form of an identifier without quotes and without
".exe" on the end. The param element is an optional string parameter and if present is passed as
command line arguments to name.

The run statement automatically appends ".exe" to the name, then searches for the called executable
program. Run searches for the program first in the directory containing the calling application (the
directory returned by the Dirstart function), then in the calling application' s current logged directory (as
returned by the Dirpath function), then in the Windows system directory (\Windows\System,
\Winnt\System32 or \Windows\System32), then in the Windows home directory (\Windows or \Winnt),
then in the directories listed in the PATH environment string. This is the same order as used by Exec
when called without a fully qualified name.

The run statement is similar to the call statement. A call transfers control to a function in the same
executable file, whereas run transfers control to a separate executable file. These similarities are
shown in the next diagram:

Page 44
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--------------------------------------+
| // Executable file Mainprog |
| class Mainprog |
public function main()
public function util(...) <---+
...
end function ----

public function main()
...
call util(...) ----+
end function <-----+

// other functions
...
+--------------------------------------+

+-----------------------------+ +-----------------------------+
// Executable file Mainprog		// Executable file Util	
class Mainprog		class Util	
uses Util		public function main(...)	
public function main()			
-----------------------------		-----------------------------	
public function main()	+-->	public function main(...)	
...			// same code as function
run util(...)	--+	// util() had before	
end function	<-----	end function	
-----------------------------		-----------------------------	
// other functions		// other functions	
...		...	
+-----------------------------+ +-----------------------------+

In the top part of the diagram the main class Mainprog has a function main() calling function util() from
the same class. At run time both functions are in the same executable file. The second part of the
diagram shows how util() can be split off into a separately compiled program. A new class Util is
created with all the code that was previously in function util() in Mainprog. Also Mainprog is altered to
use the statement run util() instead of call util(). The call and run statements have the same effect,
assuming class Util has the same code as util() had previously.

This is similar to code overlays used in earlier languages. It is possible to call up several executable
files all occupying the same memory space, as long as each is unloaded before the next one starts.

When running an application the flow of control starts at function Main which is always the first
function run. Main is allowed a single string input parameter. When running other executable files the
effect is to suspend the calling application, and load and run the executable file. The calling application
continues running after the called executable file has completed. A single string may be passed as the
command line arguments of the executable file being run.

Labels and goto Statements

Labels and goto statements are not supported, because Ubercode has enough constructs to make
them unnecessary. The for loop, for each loop, iterate loop and while loop can be exited prematurely
using the exit when condition, making it unnecessary to jump out of a loop. Multiple function return
statements or jumps to the end of a function are not needed to deal with errors occurring within the
function, because the precondition mechanism can be used to ensure the function has valid inputs.
Jumps to error handlers are not needed because the error handler is automatically called when
needed.

2.8 Expressions and Operators

An expression combines values with operators to form new values. The values being combined are

Page 45
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

operands and can be variables, constants, functions or other expressions. The operators always
expect a certain number of operands of particular types. If an expression consists of constants only, it
is called a constant expression and wherever possible is evaluated at compile time. Structured
expressions consist of curly brackets enclosing zero or more normal expressions separated by
commas, and are used for initializing values of structured types. Structured expressions are discussed
in more detail later on.

Operator precedence

When an expression has more than one operator, the order of calculation is determined by the rules of
operator precedence (also known as binding). Operators with the highest precedence are calculated
first. Operators with equal precedence are calculated from the left to the right. The following table
shows the precedence of the operators, with the highest priority at the top:

+--+
Description Operators
Unary operators not
Multiplying operators * / mod div
Adding operators + -
Relational operators = /= > < >= <= in
Logical operators and or
+--+

Round brackets (parentheses) take priority over all the operators. This is useful for controlling the
order of calculation. For example a/(b+c) is calculated as b+c first, then a is divided by the result.
Without the brackets, a/b+c is calculated as a/b and the result is added to c.

Unary operators

The unary operators include just the not operator:

+--+
Operator Operation Operand types Return type
not logical negation boolean boolean
+--+

The not operator reverses a boolean value. Numeric unary negation is carried out with the Neg
function.

Multiplying operators

The multiplying operators include multiplication, division, set intersection, and the div and mod
operators:

+--+
Operator Operation Operand types Return type
* multiplication integer, integer integer
fixed, fixed fixed
real, real real
* set intersection set[*:*],set[*:*] set[*:*]
/ division integer, integer real
fixed, fixed real
real, real real
mod modulus integer, integer integer
div integer division integer, integer integer
+--+

If only one of the operands of * or / is of real type the other will be converted to real type. Similarly, if
only one operand is of fixed type, the other will be converted to fixed type. The division operator /

Page 46
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

always returns real type, and run time error ERR_NUM_DIVZERO occurs if an attempt is made to
divide by zero.

The set intersection operator * returns a set containing only those elements that are in both of its
operand sets. The resulting set has bounds corresponding to the overlapping portion of the operands.

The integer division operator div divides the first operand by the second. If the result of the division is
not a whole number, it is rounded down to the next lowest integer. The value n div d is the same as
Int(n/d), the only advantage to using div is the division takes place as an integer operation, whereas
Int(n/d) requires a function call and a real number division which is slower. The results of div are
shown next:

 +4 div +3 = +1 // round +4/3 down to +1
 +4 div -3 = -2 // round -4/3 down to -2
 -4 div +3 = -2 // round -4/3 down to -2
 -4 div -3 = +1 // round +4/3 down to +1

The integer remainder operator or modulus operator gives the integer remainder after an integer
division takes place. If n below is the numerator (the number being divided) and d the non-zero integer
divisor, mod is defined as:

 n mod d = n - (n div d) * d

Also (n div d) equals int(n/d) so we also have:

 n mod d = n - int(n/d) * d

The next tables show the result of div and mod with positive and negative numerators and divisors (n
and d). The result of mod has the same sign as the divisor, and the result of div has the same sign as
the mathematical quotient (n/d expressed as a real number).

Page 47
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--+
n d n div d int(n/d) n mod d
6 3 2 2 0
5 3 1 1 2
4 3 1 1 1
3 3 1 1 0
2 3 0 0 2
1 3 0 0 1
0 3 0 0 0
-1 3 -1 -1 2
-2 3 -1 -1 1
-3 3 -1 -1 0
-4 3 -2 -2 2
-5 3 -2 -2 1
-6 3 -2 -2 0
+--+

+--+
n d n div d int(n/d) n mod d
6 -3 -2 -2 0
5 -3 -2 -2 -1
4 -3 -2 -2 -2
3 -3 -1 -1 0
2 -3 -1 -1 -1
1 -3 -1 -1 -2
0 -3 0 0 0
-1 -3 0 0 -1
-2 -3 0 0 -2
-3 -3 1 1 0
-4 -3 1 1 -1
-5 -3 1 1 -2
-6 -3 2 2 0
+--+

Adding operators

The adding operators are:

+---+
Operator Operation Operand types Return type
+ addition integer, integer integer
fixed, fixed fixed
real, real real
+ string string, string string
concatenation
+ set union set[*:*], set[*:*] set[*:*]
- subtraction integer, integer integer
fixed, fixed fixed
real, real real
- set difference set[*:*], set[*:*] set[*:*]
+---+

If one of the operands of addition or subtraction is of real type, the other operand is converted to real
type. Similarly if one of the operands is fixed type, the other is converted to fixed type.

The string concatenation operator joins two strings together.

The set union operator returns a set containing all elements from both operand sets. The set
difference operator returns its first operand after removing all elements that were in the second
operand. Set widening is used with the set union, difference and intersection operators, to make sure
the resulting set contains all applicable elements from the operand sets. With these operators the
result set is widened to hold a range of elements from the lowest bound of the operands to the highest

Page 48
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

bound.

The following function shows some set operations:

 function SetOperations()
 type
 Tnumset[*:*]:set[*:*]
 var
 small : Tnumset[1:10]
 big : Tnumset[10:1000]
 UnionSet : Tnumset[1:1000]
 DiffSet : Tnumset[1:1000]
 code
 small <- [1, 10]
 big <- [10, 100, 1000]
 UnionSet <- small + big
 // now UnionSet = [1,10,100,1000]
 DiffSet <- small - big
 // now DiffSet = [1]
 small <- small + big
 // causes run time error because resulting set is 1:1000
 end function

Relational operators

The relational operators include the comparison operators and the in operator for set membership. All
relational operators return boolean values:

+--+
Operator Operation Operand types Return type
= equal any, any boolean
/= not equal any, any boolean
> greater than any scalar, any scalar boolean
< less than any scalar, any scalar boolean
>= greater or equal any scalar, any scalar boolean
<= less or equal any scalar, any scalar boolean
in set membership integer, set[*:*] boolean
+--+

The equals operator = and not equals operator /= can be used with any two values of the same type.
Integers are automatically converted to fixed or real type, and fixed type is converted to real type when
needed, as discussed later under automatic type conversions. Be careful when comparing two real
numbers for equality =, because rounding errors may cause the numbers to be extremely close but not
the same.

The other four relational operators <, >, <=, >= can be used with any two values of the same scalar
type. Automatic conversions of integer and fixed types are done where necessary.

The ordering of enum types is defined by their declarations starting at 0, each constant having a value
one less than the following constant. Boolean types are ordered by False having the value 0 and True
the value 1.

Strings are ordered according to the ASCII character set. The maximum length of the string (the
ubound) does not matter because any two variables of string type are type compatible with each other.
The string comparison is done by comparing pairs of characters from each string, and the string with
the lower ASCII value is the lesser. If the strings are equal when the end of one of them has been
reached, the shorter string is the lesser.

The in operator tests whether the integer operand is in the set operand, and returns true if it is.

Logical operators

Page 49
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

The logical operators and and or have two boolean operands and return a boolean value:

+--+
Operator Operation Operand types Return type
and logical and boolean, boolean boolean
or logical or boolean, boolean boolean
+--+

The logical operators are evaluated from left to right, and evaluation stops as soon as the result of the
expression is known. This is called short circuit evaluation or jumping code and the next example
shows why this is useful. The while loop searches an array a containing max elements for an element
equal to target:

 i <- 1
 while (i <= max) and (a[i] /= target)
 i <- i + 1
 end while

If target is not in the array and the search is unsuccessful, i=max+1 when the while condition is tested
for the last time. Short circuit evaluation ensures when the test i<=max fails we leave the loop without
testing the second part of the expression, a[i]/=target. Without this strict left to right evaluation, a[i]
would be tested using an index of max+1 and the program would fail with an array index error at run
time.

Automatic type conversions

These occur when values of one type are automatically converted to another under the Type
Compatibility rules. They are a useful addition to the rules because they extend in a safe way the
situations under which two types are compatible. Automatic type conversions are also known as type
promotions or type coercions. They occur as follows:

(1) When you declare a type identifier which renames or inherits from the predefined boolean, integer,
fixed, real, string or set type, values of the predefined type are automatically converted into the
inheriting type where required. This conversion allows literals of the predefined types to be used with
the inheriting type, and enables code such as the following:

 type Tlogical:boolean
 Ttext[*]:string[*]
 var x:Tlogical
 y:Ttext[*]
 code x <- True
 y <- "Hello"

(2) Integer type is automatically converted to fixed point type where required. For example if a fixed
point variable f and an integer variable i are declared:

 f <- 100 // conversion of integer to fixed
 f <- i // conversion of integer to fixed

(3) Integer and fixed point types are automatically converted to real number type where required. For
example if we have variables r, f and i of type real, fixed and integer:

 r <- 100 // conversion of integer to real
 r <- i // conversion of integer to real
 r <- 10.25 // conversion of fixed to real
 r <- f // conversion of fixed to real

A more interesting example of automatic type conversion is:

 r <- i + f + r

Page 50
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

In this example i+f is the first addition so the integer is converted to fixed point type and a fixed point
addition occurs which results in a fixed point temporary value. The next addition is to add the
temporary value to r, so the temporary value is converted to real type then a real number addition
occurs. Finally the real number result is copied to the variable r. Such expressions are also called
mixed type expressions because the type changes through the expression.

Type demotions

Type demotions occur when real is converted down to fixed or fixed to integer type. Demotions cannot
be done automatically because they lose numeric accuracy, so the Type Conversion Functions
described later must be used instead. The following example shows type demotions - none of these
are allowed:

 i < - 1.25 // error - can't convert fixed point to integer
 i < - f // error - can't convert fixed point to integer
 f < - 1e32 // error - can't convert real to fixed point
 f < - r // error - can't convert real to fixed point
 i < - 1e32 // error - can't convert real to integer
 i < - r // error - can't convert real to integer

Numeric conversions

Numeric type conversions are automatic type conversions of integer to fixed point to real type that
occur when needed. Numeric type conversions take place in expressions, but not in structured
expressions (values between curly brackets). For example if i, f and r are integer, fixed point and real
type variables, the following are allowed:

 f < - i
 r < - i
 r < - f

As described under Type demotions it is not possible to convert back the other way, because
accuracy is lost. Instead Int and Fix can be used as Type conversion functions as follows:

 i < - Int(f)
 i < - Int(r)
 f < - Fix(r)

The term rounding is used when Int and Fix are used for converting back from real to fixed to integer
type, because accuracy is lost during conversion.

Type Conversion functions

Type conversions are for converting values of one type to another. The Type Compatibility rules
describe the automatic type conversions that occur. In other cases you can use conversion functions
to explicitly convert one type to another. In some cases data is lost when using the conversion
functions. For example when converting a real number to an integer, the fraction is lost. For this
reason, type conversion functions are not automatic and must be called explicitly. The following
conversion functions are available:

Page 51
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+---+
Function Operation Input type Result type
Chr Convert to string of length 1 integer string
CvtB Convert from xbase type Tlogical boolean
CvtI Convert from xbase type Tnumeric integer
CvtF Convert to fixed point integer fixed
CvtR Convert to real integer real
fixed real
Enumval Convert to enum type integer enum
Fix Convert to fixed point real fixed
Frac Find fraction fixed fixed
real real
Hexstr Convert to hex string integer string
Hexval Convert hex string to integer string integer
Int Round down to integer fixed integer
real integer
Ord Find ordinal value boolean integer
enum integer
integer integer
string integer
Str Convert to string any string
Val Convert string to other type string any
+---+

Chr function.
Chr converts an integer into the corresponding character from the ASCII character set. For example,
Chr(65) = "A". The string returned by Chr always has a length of 1.

CvtB, CvtI functions.
These functions convert a data type stored in an xbase file back to normal data types. CvtB converts
the logical type Tlogical to boolean, and CvtI converts the numeric type Tnumeric back to integer.

CvtF, CvtR functions.
CvtF converts integer to fixed point type, and CvtR converts integer and fixed type to real type. These
functions are not often used since automatic type conversions do the same thing. They are used in
situations where you want to force a value to be treated as a fixed point or a real number, for example
when calling a polymorphic function that requires one of these types.

A good example of the use of CvtF is when calling the Delay function, which pauses for a number of
seconds as given by an argument of fixed type. The call Delay(1) would cause a compile time error as
Delay is not overloaded to accept an integer parameter. The call Delay(CvtF(1)) would compile
successfully as the integer is converted to fixed point which is accepted as a parameter of the Delay
function.

Enumval function.
This function converts an integer into an enumerated type. When using the function you need to make
sure the integer has an equivalent enumerated value. Enumerated values start at zero and increase
by one for each enumerated constant, so an enumerated type with 7 different constants has values
from zero to 6. For example Tdays shown below has 7 enumerated constants (mon to sun) which
have values from 0 to 6. Therefore if you called Enumval to make a value of Tdays type, use an
integer between 0 and 6.

 type Tdays:enum(mon,tue,wed,thu,fri,sat,sun)

Enumval and Ord are related so if you use Ord to get the integer value of an enumerated value,
Enumval will convert the integer back to the same enumerated value. For example if enumvar shown
next is an enumerated value, the following is always true:

 Enumval(Ord(enumvar)) = enumvar

Fix function
The Fix function converts values of type real to fixed point. A run time error will occur if the real value

Page 52
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

is not in the range of values allowed for fixed type. Fix is convenient for using floating point notation
with large values. These two lines are equivalent:

 f <- 1000000000000.00
 f <- Fix(1e12)

Do not use Fix to convert integers to fixed type. If you did, the integer would be automatically
converted to a real first, then Fix would convert the real to a fixed point number! This is unnecessary
as the automatic type conversions change integer to fixed type where needed.

Frac function
The Frac function works with real and fixed type, and returns just the fractional part of a value. This
has the same sign as the original value and 0≤Frac(v)<1.0. For example:

 Frac(1.5) = 0.5
 Frac(1.0) = 0.0
 Frac(0.5) = 0.5
 Frac(0.0) = 0.0
 Frac(-0.5) = -0.5
 Frac(-1.0) = 0.0

Hexstr function
The Hexstr function converts an integer value into the equivalent hexadecimal string. The result of
Hexstr will be a string between 0 and FFFFFFFF. For example:

 Hexstr(0) = "0"
 Hexstr(255) = "FF"
 Hexstr(65535) = "FFFF"

Hexval function
The Hexval function converts a string in hexadecimal format into the equivalent integer value.
Hexadecimal strings optionally begin with "0x", for example "0xFF" and "FF" both denote the
hexadecimal string with the value 255. For example:

 call Hexval("0", i) // i = 0
 call Hexval("FF", i) // i = 255
 call Hexval("0xFF", i) // i = 255
 call Hexval("0xFFFF", i) // i = 65535

Hexval is the inverse of Hexstr, so for any integer value i the following is true:

 Hexval(Hexstr(i)) = i

Int function
This function converts values of type real and fixed to integer. It does so by rounding downwards to
the next lowest integer, unless the value already is an integer. In the latter case it is unaltered. For
example:

 Int(1.9) = 1
 Int(1.1) = 1
 Int(1.0) = 1
 Int(0.9) = 0
 Int(0.1) = 0
 Int(0.0) = 0
 Int(-0.1) = -1
 Int(-0.9) = -1
 Int(-1.0) = -1

Any fractional part of the number being converted will be lost. Also Int will not work if the resulting
integer value is too large or too small (greater than MAXINT or less than -MAXINT).

Ord function
This function converts a value of boolean type, enum type, or the first character of a string into an

Page 53
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

integer. Values of boolean type are defined so that Ord(False) = 0 and Ord(True) = 1. Values of
enumerated type are defined by the order of their constants, starting at zero. The value of a string is
the ASCII value of the first character in the string. For example:

 // Assume a type Tdays:enum(mon,tue,wed,thu,fri,sat,sun)
 Ord(False) = 0
 Ord(True) = 1
 Ord(mon) = 0
 Ord(sun) = 6
 Ord(" ") = 32

Str function
This function converts scalar types into strings. For example:

 Str(false) = "False"
 Str(true) = "True"
 Str(10) = "10"
 Str(10*0.25) = " 2.5"
 Str(1.0e9) = "+1.0E+0009"
 Str("Mystring") = "Mystring"

An optional format specifier is allowed which specifies the field width, the number of decimal places
and whether left or right justification is used:

+-- ------------------ +
| ± field - width . decimal - places |
| ^ ^ ^ |
+ or no sign indicates	Number of decimal p laces		
right justification.	for fixed types and real		
- for left justification.	types only. This is the		
	number of digits		
Specifies field width	following the		
fo r the result string. --- + decimal point.			
This is overridden if			
a wider result string			
is needed.			
+--------------- --- +

Here are some boolean and integer conversions:

 // left justify, field width of 6
 Str(False, - 6) = "False "

 // right justify, field width of 6
 Str(False,6) = " False"

 // result widened to 2 spaces
 Str(10 , - 1) = "10"

 // left justify, field width of 3
 Str(10, - 3) = "10 "

The next examples show Str used with fixed point and real numbers. With fixed point numbers you
can specify the number of decimal places, or specify the field width on its own which causes the fixed
point value to be converted using the minimum number of decimals. Real numbers are always in
exponential format with a minimum field width of 10, for example -1.2E-1000. If a larger field width is
used the number is left or right justified within the larger width. The number of decimal places specifies
how many digits to the right of the decimal point are shown, subject to a minimum of 1.

Page 54
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // right justify fixed point, field width of 6
 Str(2.5,6) = " 2.5"

 // left justify, field width of 6
 Str(-2.5,-6.2) = "-2.50 "

 // result widened to accommodate 3 decimal places
 Str(-2.5,-4.3) = "-2.500"

 // widened to 10 spaces, the minimum width for a real number
 Str(-1.25e6,1) = "-1.3E+0006"

 // field width of 10, fits exactly
 Str(-1.25e6,10) = "-1.3E+0006"

 // field width of 11, using default of 1 decimal place
 Str(-1.25e6,11) = " -1.3E+0006"

 // field width of 20, using default of 1 decimal place
 Str(-1.25e6,20) = " -1.3E+0006"

 // result widened to accommodate 4 decimal places
 Str(+1.25e6,1.4) = "+1.2500E+0006"

Some string conversions are shown next. The second and third examples use a field width greater
than the length of the string. The result string is padded with spaces on the left or right hand side,
making this similar to Lset and Rset found in Basic.

 // display widened to 5 spaces
 Str("Hello",1) = "Hello"

 // right justify, field width of 6
 Str("Hello",6) = " Hello"

 // left justify, field width of 6
 Str("Hello",-6) = "Hello "

Val function
The Val function takes a string input parameter and converts it into other types. Val returns the
converted value and an optional flag which indicates whether the conversion was successful or not.
For example:

 call Val("false",boolval,status) // boolval = False, status = True
 call Val("999",intval,status) // intval = 999, status = True
 call Val("+1.0E+0009",realval,status) // realval = 1e9, status = True

The boolean status flag returns True in the examples above because the syntax of the string being
converted is correct. A string should be in the same form as a literal of the type it is being converted
into. If you are sure the string will always be correct you can omit the optional status flag, but if the
string is not correct run time error ERR_CONV_BOOLEAN (or other conversion error) will occur.
Therefore it is best to use the status flag unless you are sure the input is correct.

In many respects Val is the inverse of the Str function, as Str converts any type into a string and Val
converts a string back into the original type. This is not always possible since real numbers may have
rounding errors because some binary values cannot be represented exactly with a string. Also the
reconversion of a fixed point or real number string loses accuracy if the format specifier used with Str
lost some of the accuracy of the original variable. Subject to these limitations, a variable v of scalar
type may be converted to a string and back to the original value again as follows:

 Val(Str(v)) = v

Structured Expressions

A structured expression consists of values separated by commas and enclosed in curly brackets. The

Page 55
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

values can be constants, variables, parameters, or other expressions. Structured expressions are
useful for initializing structured types because an entire variable can be initialized at once. For
example an array variable a can be initialized with three string values as follows:

 a <- {"Hello", Str(i), "every"+"body"}

The next example shows structured expressions used to initialize an array and a record variable:

 function test()
 type
 Tvector[*:*]:array[*:*] of integer(0:MAXINT)
 type
 Tperson:record
 name:string[20]
 year:integer(1:9999)
 end record
 var
 v:Tvector[1:5]
 p:Tperson
 code
 v <- {1,2,3,4,5}
 p <- {"James", 1976}
 end function

First an array type Tvector[*:*] and a record type Tperson are declared, then variables v and p of these
types are declared. The variables are initialized at run time with two structured expressions. The
number and type of values used in a structured expression must match the type being initialized. The
type of the structured expression is determined from its context as follows:

Assignment statement. When structured expressions are used as the right hand side of an
assignment, they have the type of the variable being assigned to.

When a structured expression is assigned to an array of fixed maximum size there must be an
initializer for each element in the array, otherwise run time error ERR_ARRAY_REF occurs. When
assigned to a resizable array the array keeps its lower bound at the original value and changes its
upper bound to match the number of initializers. The array must be a one-dimensional array and there
must be at least one initializer. Because the lower bound remains unchanged, a structured expression
can initialize a resizable array regardless of the lower bound. For example you could use Redim to
give the array lower and upper bounds of zero, then assign to the array with a structured expression,
then the lower bound would still be zero and the upper bound will change to match the initializers.

When a structured expression is assigned to a list or table variable, each element in the expression is
added as a component of the variable. After the assignment, the length of the list or table equals the
number of initializers in the structured expression. If the structured expression has too many initializers
to fit in a list or table of fixed maximum size, run time errors ERR_LIST_FULL or ERR_TABLE_FULL
will occur. These errors will not occur when assigning to a dynamically sized list or table because the
variable grows to fit the number of initializers.

Function arguments. In this context the structured expression is treated as record type. This is
because Ubercode uses polymorphic functions which mean the function being called is determined by
its signature - therefore we need the types of the parameters to get the signature to find the function.

Empty lists and tables. Empty structured expressions are type compatible with lists and tables. A
useful way of removing all items from a list or table variable is by assigning it an empty structured
expression. If v is a list or table variable, it will have a length of zero after the following assignment:

 v <- {}

Numeric conversions within structured expressions. Numeric conversions do not occur within
structured expressions. This is because structured expressions can be used for initializing generic
types, and components of the generic type have unknown types and there is no way of knowing when
numeric conversions should be applied. Although numeric conversions could (in theory) be enabled

Page 56
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

for structured expressions used with non-generic (user declared type) this would be confusing, since
some structured expressions would use numeric conversions and others would not.

Therefore to be consistent, the values within a structured expression must use the exact type required.

2.9 Error Handling

When a program is running, unexpected situations may occur that prevent the program working
normally. These events are called run time errors or exceptions and they cause the program to display
an error message and (in most cases) halt. Errors are caused by a lack of resources such as memory
or disk space, operating system errors, numeric errors, files not being in the correct format, failure of
software verification tests, or failures of algorithms. There is a complete list in the Run Time Errors
section.

When an error occurs there are several alternatives: fix the problem, halt the program or continue
running. The term error handling or exception handling describes the actions taken when an error
occurs. Different applications will take different corrective actions. A numerical application will prefer to
terminate the program to find the error so correct results can be ensured, whereas a real-time
application will prefer to keep running.

Default error handling

At each point in a class where an error could occur, the compiler inserts checks in the code to make
sure the operation succeeded. If the operation failed the default error handler is called. This is function
Errorhandler in the run time library, and its source code is shown next:

+--+
| function Errorhandler(in errno:integer) |
| code |
| select errno |
| case ERR_RECOVER_FIRST:ERR_RECOVER_LAST => |
| call Sound("") |
| if Msgbox("Error " + Str(errno), Errormessage(), |
| "Continue"+NL+"Halt") /= "Continue" then |
| call Halt() |
| end if |
| else => |
| call Sound("") |
| call Msgbox("Error " + Str(errno), Errormessage()) |
| call Halt() |
| end select |
| end function |
+--+

This function is called automatically whenever an error occurs, and the errno parameter is one of the
error numbers listed in the Run Time Errors section of the manual. The first case option checks
whether errno is a recoverable error. Recoverable errors are errors that do not cause loss of data or
threaten program stability. If the error is recoverable, a message box is shown containing two buttons,
"Continue" and "Halt". Pressing "Continue" causes the error handler to return normally and allows the
program to continue running. Any other response in the message box calls Halt which ends the
program.

If errno is non-recoverable (the else option) a message box is again used to display the error details.
The Errormessage function returns a descriptive string relating to the error, and may include extra text
describing the line number and class where the error occurred. This message box does not have a
"Continue" button, and when closed Halt is called and the program ends.

The error handler therefore allows the program to continue running after recoverable errors, and halts
the program when more serious errors occur. Error handling can be modified. Either the default
Errorhandler in the run time library System class can be altered, or an Errorhandler can be added to a
class to handle errors occurring in just that class. Modified error handlers are described next.

Page 57
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Intercepting errors

Reliable software must continue working in the event of errors. This is called robustness (see [Meyer
1988 p4] in the Bibliography). To achieve this write your own error handler to override the default one.
This is possible because of the scope rules. You declare a function Errorhandler at private scope with
the same parameters as the default handler, then any errors in the class (except operating system
errors) are intercepted by your error handler instead of the default. Your handler can do the following:

•• Ignore the error and just return, which continues running the program. This is advisable only for a
recoverable error.
•• Call other functions to fix the error. Be careful when doing this, however. Some errors are due to low
resources, such as the stack or heap running out of memory, or disks and directories becoming full.
Processing cannot reliably continue because function calls and string allocation may fail. The
recommended action in the case of these errors (which include ERR_IO_DISKFULL, ERR_MEMORY
and ERR_STACK_SPACE) is to display the error details then halt. Also system errors cannot be
handled.
•• Call the Halt function to end the program. This is recommended for all errors, except for recoverable
errors where it is safe to continue.

As an example, consider a class Print which copies some text to the printer. Function Errorhandler
replaces the default error handler and Printtext does the printing.

 // Print.cls
 Ubercode 1 class Print

 function Errorhandler(in errno:integer)
 code
 select errno
 case ERR_PRINTER_INIT =>
 call Sound("")
 call Msgbox("Print", "Cannot initialize printer")
 case ERR_PRINTER =>
 call Sound("")
 call Msgbox("Print", "Print job canceled or no disk space")
 case ERR_RECOVER_FIRST:ERR_RECOVER_LAST =>
 call Sound("")
 if Msgbox("Error " + Str(errno), Errormessage(),
 "Continue"+NL+"Halt") /= "Continue" then
 call Halt()
 end if
 else =>
 call Sound("")
 call Msgbox("Error " + Str(errno), Errormessage())
 call Halt()
 end select
 end function

 function Printtext(in text:string[*])
 var count : integer(0:MAXINT)
 code
 call Startprint(Sysprinter)
 for count from 1 to Strcount(text)
 call Drawtext(Sysprinter, Strline(text,count))
 end for
 call Endprint(Sysprinter)
 end function

 end class

The error handler processes the ERR_PRINTER_INIT and ERR_PRINTER errors, and includes the
rest of the code from the default error handler to handle other recoverable and non-recoverable errors.
All error handlers must handle the full range of errors, since errors do not propagate between
handlers. Therefore the blocks of code starting with the lines case ERR_RECOVER_FIRST :

Page 58
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

ERR_RECOVER_LAST => and else => are required and must not be left out.

The purpose of the error handler is to display a helpful message whenever specific errors occur in the
Print class. ERR_PRINTER_INIT occurs if no printer had been set up for the computer, and
ERR_PRINTER occurs if the print job was canceled while spooling or if the computer ran out of disk
space while writing the spool file. Both these errors are possible while printing.

Without the error handler, errors in Print would use the run time library error handler in the System
class. This would show a generic error message, and allow the program to continue if a recoverable
error occurred or terminate the program otherwise. Therefore by using an error handler, a class is able
to control its own errors. This makes it easier to write classes that can be used in other programs, and
leads to more reliable software.

Scope of error handlers

The default error handler is function Errorhandler in the run time library, and is in scope to all classes.
When writing an error handler local to a class, it must be declared at the start of the class (following
any prototypes), and it must be declared using private scope. This means it must use the private
keyword, or no keyword at all because private is the default. Error handlers therefore follow the same
scope rules as other functions.

The following example shows three classes using different error handlers. The non main class Menu is
shown first:

 Ubercode 1 class Menu

 private function X()
 code
 errors ... ====> calls default handler in System.cls
 end function

 // other functions...

 end class

Class Util is another non main class:

 Ubercode 1 class Util

 function Errorhandler(in errno:integer)
 code ^
 // error handler... |
 end function |
 |
 private function Y() | call the
 code | local
 errors ... ==============* handler
 end function

 // other functions...

 end class

Class Myprog is a main class which inherits Menu and Util:

Page 59
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 Ubercode 1 class Myprog
 uses Menu Util

 public function main()
 code
 errors ... ===> calls default handler in System.cls
 end function

 // other functions...

 end class

The main program Myprog contains all three classes when compiled. If Myprog has a run time error,
the error handler that takes control depends on the class causing the error. Errors in class Menu use
the default handler in the run time library, as there is no other handler in scope. Errors in class Util use
the local handler which has private scope. The local handler must be declared at the start of the class,
immediately following any prototypes, so it is in scope through the entire class. Errors in Myprog use
the default handler from the run time library which is in the System class.

It should be noted this example was deliberately made complex to show the full flexibility of error
handling. Error handling can be kept simple by following the guidelines in the next section.

Error Handling made simple

Error handling can be made very simple by following these suggestions:

(1) Use the default handler for most applications. The default handler is function Errorhandler in the
run time library (the System class). Nothing special needs to be done to follow this recommendation,
since it is the default behaviour.

(2) For detecting specific problems, such as the Printtext example shown previously, put the functions
that might cause an error into a separate class. Declare a private error handler and put this at the start
of the class, immediately following any prototypes. The custom error handler then handles all errors
occurring in the class.

The custom handler must handle the full range of errors, since errors do not propagate between
handlers. Copy the Errorhandler function from the System class and use it as a template. Make sure it
is declared private and include the handled errors immediately after the select errno command. Refer
to intercepting errors for an example.

(3) For improving the overall reliability of an application, you can modify the default error handler in the
system class so that instead of displaying the error and halting, it continues running. This gives the
user a chance to save data and gives the application a chance to shut down gracefully. The modified
error handler will be the default for the entire application.

System errors

The term System error refers to an error detected by the Windows operating system. These errors
(errors ERR_SYS_ACCESS to ERR_SYS_OTHER) are not sent to the error handler and cannot be
handled in the normal way. Also they cannot be debugged with the integrated debugger. When system
errors occur, program data and the stack area may be corrupt, which prevents the program running
normally.

System errors should not normally occur. They are caused by undetected bugs in the run time library,
or bugs in system software such as printer drivers and graphics drivers, or bugs in the operating
system. System errors are used only to guard against unexpected problems that might cause the
computer to lock up, or might cause problems for other applications.

When system errors occur, they are displayed in a message box which includes the error number, the
description of the error, and the line number and class details if available. Pressing OK in the message

Page 60
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

box will end the program.

2.10 File Input and Output

File input and output is used to read and write data from disk, and for working with the computer' s
files, directories and disks. Ubercode supports file input and output using external variables which are
stored on disk, and by providing file and directory functions suitable for common programming tasks:

•• Read and write text files.
•• Read and write binary files, by declaring external variables that map the data.
•• Read and write data base files using the xbase file format or binary.
•• Read and write data base files using the XML file format.
•• Read and write bitmap files to and from visual objects.
•• Store large structures on disk to reduce memory requirements.
•• Store program initialization data that is kept between different runs.
•• Create and delete files and directories.
•• Copy and rename files.

External variables

External variables store data in disk files. They work by declaring variables of list type or table type
and using the external keyword in the declaration. The variable works like a normal list or table type
variable, except its data is stored on disk instead of in memory. Assuming type T[*] shown next is a list
or table type, external variables are declared as follows:

 var x:T[*] (external)
 var y:T[*] (external <- name)

In the example x is stored on disk and is automatically deleted when it falls out of scope. Variable y is
stored in a file called name which is not deleted by the program. The name element is a fixed string
value such as a string constant or an in parameter. Name must also be a fully qualified name
(including a full directory path starting from the root directory). Variable y is known as a persistent
object because its lifetime extends beyond that of the program.

The external keyword is in round brackets because it is a storage constraint and not part of the data
type. External variables are type compatible with normal variables of the same type, and the same
operators can be used. The assignment operator can be used to copy between external variables and
memory variables of the same type. Although the operators are optimized for external variables,
operations on disk are slower than equivalent operations in memory. Programs should be designed
not to loop through external variables more than is necessary.

As explained name must be a fully qualified file name. This allows the program to find the file if the
working directory changes, and makes it easier to detect aliasing which occurs if different external
variables use the same file. Sharing the same file is not recommended as it may cause the file size to
change unexpectedly. Also the file must not be write protected, otherwise run time error
ERR_IO_READPERM or ERR_IO_WRITEPERM occurs when the external variable is first opened.
This applies even if the program does not actually modify the external variable, and is because the file
is opened in read / write mode. Therefore external variables cannot be used on read-only media such
as a CD, and functions such as Loadfile must be used instead.

Fully Qualified Name

A fully qualified name (or well formed path) is the full path and name of a disk file. All printable
characters (" " to "~") are allowed in the path, except for the following six characters:

 * ? " < > |

which are prohibited under Windows. Also the following characters:

Page 61
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 : / \

are used as separators between directory names, not as part of an actual name. Paths may contain
spaces, but should not begin or end with a space. Either the backslash or forward slash delimiters
may be used to separate the directory names. For example:

+--+
File name Means
c:\tmp File called "tmp" in root directory
\tmp As above
/usr/docs/mydoc.txt File called "mydoc.txt"
+--+

The Filechk function checks a string is a fully qualified name. It returns 1 if it is, 0 if the string denotes
a wild card and -1 if it is illegal. You can make up fully qualified names as follows:

•• Get an existing directory path using Dirstart or Dirpath and join a filename on the end.
•• Create a directory path by concatenating FileGetdrive with FileGetdir, and join a filename on the end.
•• Get a directory path and join a filename from the Filelist function on the end. Filelist is passed a
pattern string, and returns the matching file names.
•• Make up a string and use Filechk to check it is legal.

File and Directory Functions

The following file functions and directory functions are available:

Diradd adds a new subdirectory.

Dirchg changes the logged directory. The new directory path must exist.

Dirchk checks a directory (folder) path is valid. A legal directory path is a chain of directories, starting
from the root and ending with a slash or backslash.

Dirdel deletes a subdirectory which must be empty. The root directory cannot be deleted.

Dirlabel returns the volume label and serial number of a disk.

Dirpath returns the current directory path. This will always be a legal directory path and will always
exist.

Dirsize detects whether a specified directory exists, and if it does it also finds the free space in the
directory. Under most operating systems the free space in a directory is the same as the free space on
the disk drive.

Dirstart returns the directory that contains an application' s executable image. This is the start
directory, in the sense that it is where the executable image is loaded from.

Filechk checks a fully qualified name to make sure it is legal. A legal name is a chain of directories
starting at the root, and ending with a wild card notation or a single file. The directories do not
necessarily exist, and you can use the Filesize function to see whether the file exists or not.

Filecopy makes a copy of a file. This works with binary files and text files.

Filedel deletes one or more files.

FileGetdir returns the directory part of a filename (everything following the drive letter, up to and
including the final slash or backslash).

Page 62
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

FileGetdrive returns the drive letter part of a filename (the drive letter and the following colon
character).

FileGetext returns the extension part of a filename (everything between the final full-stop character
and the end of the filename, including the full-stop).

FileGetfname returns the name part of a filename. This is the part of the filename following the
directory or drive letter, excluding the extension.

Fileinfo returns information about the structure of an xbase file or XML file. The information can be
used for reading and writing the file.

Filelist is given a fully qualified name which must specify a wild card. It returns a list of all folders
(directories) or files matching this pattern.

Fileren is used to rename a file.

Filesize detects whether a specified file exists, and if it does it also returns the size in bytes of the file.
If the size is zero the file exists but is empty.

Filetime returns the date and time of the last modification of a file. The information is returned in the
same format as the Time function.

Filextn changes the file extension in a file name string.

Loadfile loads data from a disk file into a program variable. It can be used with a text file, CSV file,
binary file, xbase file or XML file.

Savefile saves a program variable into a disk file. It uses the same file types as Loadfile.

Winhelp displays a Windows help file in the Help file format.

Files in Ubercode

Ubercode doesn' t use file data types, file pointers or streams, because the external list type and table
type provide equivalent functionality to the binary and text files of other languages. The similarities
between lists in Ubercode and files in C and Pascal are shown below. All three routines open a binary
file, write ten strings "Henry 1" to "Henry 10" to the file, then close it and leave it on disk:

Page 63
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Ubercode
+--+
| Function TenNames() |
| const name : string[*] <-"Henry" |
| type Tlist[*] : list[*] of string[20] |
| var i :integer (1:10) |
| Tfile:Tlist[*] (external<-"\x.dat") |
| code |
| for i from 1 to 10 |
| call Listadd(name+" "+Str(i), Tfile) |
| end for |
| end function |
+--+

Pascal
+--+
| Procedure TenNames; |
| const name = 'Henry'; |
| type Tname = string[20]; |
| var Tfile : file of Tname; |
| i : integer; |
| tmp, buffer : Tname; |
| begin |
| assign(Tfile, '\x.dat'); |
| rewrite(Tfile); |
| for i := 1 to 10 do |
| begin |
| str(i, tmp); |
| buffer := name + ' ' + tmp; |
| write(Tfile, buffer); |
| end; |
| close(Tfile); |
| end; |
+--+

C
+--+
| void TenNames(void) |
| { |
| const char name = "Henry"; |
| FILE * Tfile; |
| int i; |
| char buffer[20]; |
| Tfile = fopen("\x.dat", "wb"); |
| for (i=0; i<10; i++) |
| { |
| sprintf(buffer,"%s %d", name,i+1); |
| fwrite(&buffer, sizeof(buffer), 1, Tfile); |
| } |
| fclose(Tfile); |
| } |
+--+

The next three routines save a string to a text file and leave it on disk.

Page 64
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Ubercode
+--+
| Function WriteText() |
| code |
| call Savefile("\x.txt", FILE_TEXT, |
| "The quick brown fox" + NL + |
| "jumps over the lazy dog." + NL) |
| end function |
+--+

Pascal
+--+
| Procedure WriteText; |
| var Tfile : text; |
| begin |
| assign(Tfile, '\x.txt'); |
| rewrite(Tfile); |
| writeln(Tfile, 'The quick brown fox'); |
| writeln(Tfile, 'jumps over the lazy dog.'); |
| close(Tfile); |
| end; |
+--+

C
+--+
| void WriteText(void) |
| { |
| FILE * Tfile; |
| Tfile = fopen("\x.txt", "wt"); |
| fputs("The quick brown fox\n" |
| "jumps over the lazy dog.\n", Tfile); |
| fclose(Tfile); |
| } |
+--+

Importing Data Files

Existing files of a known record size can be imported, which allows loading data files from other
applications. The only requirement is that you know the size in bytes of the fields and their types. Use
the section on Internal Data Formats to find the data types that match the record fields. For fields that
have no direct equivalent, use an array of enum type, because enums are stored in one byte. These
techniques allow matching any fixed record size file. Refer to Importing Xbase Files and Importing
XML Files for specific information for these file types.

After finding the field layout, declare a record to match the external file. Its size must match the
records in the external file, otherwise run time error ERR_IO_BADSIZE will occur. Then declare an
external list or an external table using this record.

The next example shows an external file "people.dat". The records have a fixed size, and each record
has a field for an identifying number, a name, an address and a credit limit.

Page 65
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

"people.dat"
(File can have any number of records)
+-- - - -+
			one			
			record			
			in			
			file			
+-- - - -+

record size = 72 bytes
+--+
i/d no	name	address	credit limit
long	20	40	floating
integer	characters	characters	point
+--+

The matching record is as follows:

 type Tchar : enum (ch0, ch1, ... ch255)
 Talpha : array[*:*] of Tchar
 Tdata : record
 IdNo : integer(0:MAXINT)
 Name : Talpha[1:20]
 Address : Talpha[1:40]
 CrLimit : real(0:1e6)
 end record
 Tfile[*] : list[*] of Tdata
 var People : Tfile[*] (external <- "\data\people.dat")

Note the use of the pseudo string type Talpha. An enum type Tchar is declared which has 256
different values, one for each ASCII character. A one dimensional array type is then based on this
type. This process is needed because when a string is stored in a file, extra bytes are saved at the
start for the current length. Therefore a string can' t map onto a character array in a binary file. A
variable of type Talpha is converted to string type with the following function:

 function Str(in astr:Talpha[*:*] out s:string[*])
 var i:integer(0:MAXINT)
 code
 s <- ""
 for i from Lbound(astr) to Ubound(astr)
 s <- s + Chr(Ord(astr[i]))
 end for
 end function

Reading and writing text files is done using Loadfile and Savefile. Loadfile loads a file from disk into a
variable, and Savefile saves the variable back to disk. The following example shows how to read a text
file from disk and to write it back out to a different file:

 call Loadfile("autoexec.bat", FILE_TEXT, memvar)
 ...
 call Savefile("autoexec.bak", FILE_TEXT, memvar)

The call to Loadfile reads the "autoexec.bat" file into the memvar variable. This variable may be a
string, an array of strings or a list of strings. After calling Loadfile you can change the text in the
variable, and process it any way you want. Finally the call to Savefile saves the text to the
"autoexec.bak" file. This technique using Loadfile and Savefile works with any text file, the only
restriction being the maximum size of the string or the maximum number of elements in the list or
array.

Importing Xbase Files

An xbase file may also be used by a program. You have to know the structure of the xbase file
records, then you must declare a record that matches the file (this can be done automatically as
described later). Fileinfo can be used to get the structure of the xbase file record. For example if an

Page 66
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

imaginary xbase file "people.dbf" has four fields, Name of type CHAR[20], Achievement of type
CHAR[20], Dob of type CHAR[10], and Status of type NUMBER[10], Fileinfo would return the following
record structure:

 Tpeople : record
 delete_flag : Tchar
 name : Tchars[1:20]
 achievemen : Tchars[1:20]
 dob : Tchars[1:10]
 status : Tnumeric[1:10]
 end record

Tpeople is the name of the record type, delete_flag is an extra field that occurs at the start of every
xbase file record, and the other four fields store the xbase data. The Tchars and Tnumeric types are
part of the run time library. The Achievement field has been renamed Achievemen to allow for the
maximum length of an xbase field name. The record structure could be used in a class as follows:

 // People.cls
 Ubercode 1 class People

 type Tchar:Enum(ASCII)

 public type TpeopleRec : record
 delete_flag : Tchar
 name : Tchars[1:20]
 achievemen : Tchars[1:20]
 dob : Tchars[1:10]
 status : Tnumeric[1:10]
 end record

 public type tpeople[*]:table[*] of TpeopleRec
 index 1(name)
 end table

 end class

The class is called People to match the xbase file. The xbase file record has been renamed to
TpeopleRec and Tpeople[*] is a table type which allows indexed access. This is more efficient when
dealing with large xbase files. To use the xbase file, an external variable is declared using Tpeople[*]
type. Then the usual table functions such as Tabadd, Tabdel and the iterate loop may be used.

This process can be automated using the Developer environment. Open a main class, then use
Program_Add Database File to add the database and a new wrapper class to the program. The new
non main class is automatically included by the main class (program). The main class is not altered,
apart from having its uses clause extended to inherit the new class.

The section of the manual titled DBF file type has more details of the xbase file format.

Importing XML Files

An XML file may also be used by a program. The file structure must be known, then a record and table
matching this structure must be declared. Fileinfo can be used to get the XML file structure, as long as
the file contains at least one record. Fileinfo works by parsing the XML file, and returning the structure
of the elements it finds in the file. For example, the following XML file contains two records:

Page 67
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 <customers>
 <customer>
 <idno>101</idno>
 <name>Ferdinand Fawcette</name>
 <address>1 High St, Anytown</address>
 <crlimit>100.0</crlimit>
 </customer>
 <customer>
 <idno>102</idno>
 <name>John Doe</name>
 <address>3 the Mansions, Puddletown</address>
 <crlimit>50.0</crlimit>
 </customer>
 </customers>

This XML file is suitable for importing, since it has a database-style structure consisting of repeated
records <customer> ... </customer>, and each record has the same fields in the same order. Fileinfo
returns the following structure:

 customers : list
 customer : record
 idno : integer
 name : string[18]
 address : string[26]
 crlimit : fixed
 end record
 end list

This shows that customers is a list, customer is the record structure of the list elements, and the
record has four fields as shown above. This structure can be used in a class as follows:

 // Customers.cls
 Ubercode 1 class Customers

 public type TcustomerRec : record
 idno : integer(0:MAXINT)
 name : string[18]
 address : string[26]
 crlimit : fixed(0:MAXFIXED)
 end record

 public type Tcustomer[*]:table[*] of TcustomerRec
 index 1(idno)
 end table

 end class

The class is called Customers to match the file. The customer record has been renamed to
TcustomerRec and the table has been renamed to Tcustomer[*]. This follows the convention of using
T as the first letter of types, and gives the record and table types the same base name. The
Tcustomer[*] table can be used for indexed access to the XML file by using Loadfile to populate it with
the XML data. Then the usual table functions such as Tabadd, Tabdel and the iterate loop may be
used. If any table operators modify the table, Savefile should be called to save the table back to the
XML file.

This process can be automated using the Developer environment. Open a main class, then use
Program_Add Database File to add the database and a new wrapper class to the program. The new
non main class is automatically included by the main class (program). The main class is not altered,
apart from having its uses clause extended to inherit the new class.

The section of the manual titled XML file type has more details of the XML file format.

2.11 Windows and Menus

Page 68
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

The Ubercode Graphical User Interface (GUI) is based on Common User Access (see [IBM GUIDE
1991, IBM AIDR 1991] in the Bibliography) as modified by Microsoft Windows. This defines a standard
user interface using windows for data entry and menus for navigating through an application.

How Windows work

A window (also called a form or dialog box) is an area on the screen for displaying information. A
window usually contain control objects for user interaction. When adding a window to a program you
design the window' s appearance using a visual editor and you write code in the form of a function to
handle events in the window. When the window is active, it sends events to the window function. The
following diagram shows how these are related:

The diagram shows a window titled "My first window" which is included in a class. The class also
contains the function Myfirst as shown. After the program is compiled and run, and the window is
visible, code in Myfirst runs in response to user actions in the window. This process is now explained
in more detail.

Window appearance

This is designed with the Dialog Editor or an external dialog editor such as the Dlgedit program
provided by Microsoft. These visual editors allow you to add controls to the window and to set their
properties using a graphical editor. After designing the window it is saved in a resource file.

The window shown above uses the following properties. Most of the properties can be left at their
defaults, and the table only shows properties that are set to non-defaults. An important property is the
name which is needed whenever you refer to a window or a control from code.

Page 69
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--+
| Caption = "My first window" |
| Name = Myfirst |
| Position = 100,100,120,60 |
| Typeof = Dialog |
+--+
+--+
| Alignment = 0 |
| Caption = "Type in something below:" |
| Name = Label1 |
| Position = 4,4,110,14 |
| Typeof = Label |
+--+
+--+
| Alignment = 0 |
| Borderstyle = 1 |
| Name = Edit1 |
| Position = 4,18,110,14 |
| Typeof = Edit |
+--+
+--+
| Caption = "OK" |
| Default = 1 |
| Name = Button1 |
| Position = 40,38,40,16 |
| Typeof = Pushbutton |
+--+

The Dialog object is the window which contains three control objects. The Label object is the text in
the window which is called a label because it describes or labels other controls. The Edit object is the
rectangular area for typing in text. The Pushbutton object is the OK button which is pressed to close
the window.

After choosing the properties and designing the window its layout is saved in the resource file. This is
a text file with the ".rc" file extension. Normally you don' t need to look at the resource file because it is
generated automatically. However you may want to modify resource files from other languages or edit
a resource file by hand. Here is the resource file containing the properties just defined:

 // Windemo.rc
 #define Label1 101
 #define Edit1 102
 #define Button1 103
 Myfirst DIALOG 100, 100, 120, 60
 STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
 CAPTION "My first window"
 BEGIN
 LTEXT "Type in something below:",Label1,4,4,110,14
 EDITTEXT Edit1,4,18,110,14,WS_TABSTOP
 DEFPUSHBUTTON "OK",Button1,40,38,40,16,WS_TABSTOP
 END

The Resource statements in the file use Microsoft syntax (see [Microsoft SDK 1992] in the
Bibliography).

Window code

The other important part of a window is its window function. This processes graphical events that
occur in the window. A window function is similar to a normal function, but it must use the callback
keyword, it must have the same name as the window, and must have the parameters shown next. The
following diagram shows the window function for the Myfirst window:

Page 70
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

When the user operates the window at run time, events are triggered which are sent to the window
function. Events correspond to changes in the controls, pressing buttons, clicking the mouse and
pressing keys. Function Myfirst above processes the load event and the command event. You can run
code or call other functions in response to an event, or you are free to ignore it.

Putting it all together

The window and its event function can easily be combined into a program. The window properties are
in "windemo.rc" shown previously. The event function Myfirst is part of the main class "Windemo.cls"
shown next:

 // Windemo.cls
 Ubercode 1 class Windemo

 callback function Myfirst(in EventId:integer
 ControlObj:control
 Key:integer
 out Cancel:boolean)
 code
 select EventId
 case LOAD_EVENT =>
 call SetText(me.Edit1, "Default text")
 case COMMAND_EVENT =>
 if ControlObj = me.Button1 then
 call Unload(me)
 end if
 end select
 end function

 public function main()
 code
 call Show(Myfirst, 1)
 end function

 end class

This works as follows. Windemo is a main class which contains window Myfirst and its event function.
The class starts running at function main which calls Show to activate the window. The value of 1 used
with Show means Myfirst is a modal window (modal and modeless windows are explained later).

When Show is called, it loads window Myfirst into memory before making it visible. This triggers the
Load event which is sent to the window function. The function sets the text in the edit field (call
SetText...) after which Show resumes control. Show makes the window visible and makes it active

Page 71
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

(ready for use).

In this example, the command event is triggered when the user clicks the OK button. When the
window function receives the Command event, it checks which button was pressed, in case the
window has more than one button. If the OK button was pressed, the window is unloaded which
removes it from the screen and from memory. After the window is unloaded the call Show(Myfirst,1)
returns, function main returns and the program ends.

To sum up, all windows use this technique. At design time the Dialog editor sets the properties which
are saved in the resource file. The code for the window function is written as part of a class. After
compiling and running the program, the Show command makes the window active. When the window
is operated it triggers events which are sent to the window function. Eventually the window is closed,
and when there are no more windows the program ends.

Visual objects and their properties

The term object in Ubercode refers either to a visual part of a program such as a window or control
(Visual objects), or a program element which represents part of an application (Program objects). All
objects have a name, a type, a hidden internal structure, methods for changing the object' s internal
state, properties for reading or writing a single attribute of the object, and the ability to inherit from
other objects.

Visual Objects. When designing a program' s graphical interface we are concerned with visual objects
because these represent the windows and controls. A visual object is a user interface element
provided by Microsoft Windows, such as the Dialog object, Label object, Edit object and Pushbutton
object shown in the previous example. All visual objects store values that are read and written with
Properties, and have an internal state that is changed using Methods. Visual objects also generate
Events when they are used at run time. Refer to the Object list for a complete list of visual objects,
their properties, methods and events.

When programming with visual objects the name is used to refer to it from code. All visual objects
have a name which might be the name of a window, a control, a predefined system object such as the
printer, or me which refers to the containing window. Visual objects use the following notation:

+--+
Notation Meaning
Dlg Refers to a window named Dlg
Dlg.ctl Refers to a control named ctl in Dlg
me Refers to current window function
me.ctl Refers to a control named ctl in current window function
Sysprinter Refers to the default printer
Sysclipboard Refers to the system clipboard
Sysscreen Refers to the system screen
+--+

Program Objects. These represent real-life data and actions being modeled by your application. They
are represented by public functions and types in a class. The public functions are the properties and
methods of the object, and the function code is the internal behavior of the object. Program objects
can be declared as variables in other classes, passed to functions, used as components of other
objects (aggregation) and saved to disk. Program objects are discussed in more detail in the Abstract
Data Types section of the manual.

Properties. Properties are named attributes of an object that can be read and in most cases modified
while the program runs. Design Time Properties are stored in the program' s resource file and are set
before compiling the program. All properties are read and modified with the syntax GetProperty and
SetProperty. A property is always read with a function call and is modified with a subroutine call. An
example of getting and setting a read/write property of an object Obj is:

 value = GetProperty(Obj)
 call SetProperty(Obj,value)

Page 72
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

Visual objects are provided "ready-made" and have properties available for most programming tasks.
Program objects are written by you as the program develops, so if you want to be able to modify the
object' s properties you need to include Get and Set functions when programming the object.

Although properties are used for getting and setting data in both types of object there is an important
difference in the lifetime of data stored in the two objects. Data in a visual object exists for the lifetime
of the window containing the object. Therefore if a window is loaded in one function and unloaded in
another, the data will exist between the two points. In the case of a program object the data exists for
the lifetime of the local variable that originally declared the object.

Methods. Methods are functions that operate on the internal state of an object. They carry out a
significant amount of processing upon its internal state and may change the appearance of a visual
object. Methods are always invoked with a call statement because they are represented by public
functions.

Modal and Modeless Windows

An application with more than one window needs to decide if its windows are modal or modeless. A
modal window disables all other windows in the application while it is active, thus only one modal
window can be used at a time. This is useful where an application needs to get some information
before continuing, as the user has to enter the data then close the window before continuing. A
modeless window does not disable any other windows and any number of modeless windows can be
used at one time. This is useful when an application allows the user to work in several windows at
once.

Whether a window is modal or not is determined by the call to Show that displayed the window. The
call Show(Dlg,1) displays Dlg as a modal window and Show(Dlg,0) displays a modeless window. A
window' s modal or modeless state cannot be changed while the window is actually visible. To test
whether a window is modal or not, use the Ismodal function.

The next diagram shows a modal window. An application starts by showing a main window, which is
the window at the top of the diagram. The main window then calls Show(NewWindow,1) which shows
the new window as a modal window. After the new window appears, the main window is locked out
until the new window is closed or hidden. When this happens the new window disappears from the
screen and the main window can be used again.

============================*
| X | Main window |

| This is the main window. |
| It is shown first. |
| |
| Calls Show(NewWindow,1) |
| | |
=============================
 |
 V
============================*
| X | New window |

| This window is modal. |
| No other window can be |
| used until it is closed. |
| *=========+ |
| | Close | |
| *---------+ |
=============================

The next diagram shows a modeless window. The application starts by displaying a main window
which calls Show(NewWindow,0) to show the new window as a modeless window. After calling Show
the new window becomes the active window. Both windows can be activated by clicking with the

Page 73
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

mouse, and events in each window are sent to the corresponding window function.

============================*
| X | Main window |

| This is the main window. |
| It is shown first. |
| |
| Calls Show(NewWindow,0) |
| | |
=============================
 |
 V
============================*
| X | New window |

| This window is modeless. |
| It can be used at the same |
| time as the main window. |
| *=========+ |
| | Close | |
| *---------+ |
=============================

When an application has several windows on display, the following rules explain how Show works
when you want to display different windows. The purpose of these rules is to make sure modal
windows work properly, and that when a modal window is active all the other application windows are
disabled.

(1) If a modeless window is already on display, then Show(Modeless) can be used to reactivate it.
Show(Modeless) is equivalent to clicking the window with the mouse. You cannot use Show(Modal) to
reactivate the modeless window as a modal window. Instead you must Unload or Hide the window
before showing it modally.

(2) A modal window may show another modal window but not a modeless window. If a modal window
could show modeless windows, it would not be modal.

(3) A disabled window cannot be activated with Show. Although in theory Show could first enable the
window, then activate and show it, this does not happen because the window may have been disabled
by a different modal window. If Show was allowed to enable other windows, then calling Show from a
modal window on one of the previous windows would stop the window being modal.

Main window and Main function

All programs start running from function main, which can be an ordinary function or a window function.
Function main is declared using public scope in a main class. All applications consist of a main class
and any number of non-main classes. Two examples of a main class are shown next. In the first
example main is a normal function and in the second example main is a window function. Here is the
first example:

 Ubercode 1 class MainClass
 function main()

 public function main() <---------------------- Execution starts here.
 code
 // This is the first line of code run
 ...
 end function ----------------------> Execution ends here when
 all the application windows
 end class are unloaded.

In this first example, main is an ordinary (non-window) function. The program starts at function main.
Main is called a startup function because it contains the code that runs first. The code in main may

Page 74
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

show modal and modeless windows which operate as usual. Calls to Show(modeless) return
immediately after display and calls to Show(modal) do not return until the modal window is hidden or
closed. When execution reaches the end of main, all windows stay loaded until the user closes them
or they are unloaded by code (the Unload function). The program does not end until all application
windows have been unloaded.

In the second example, main is a window function. There must also be a window called main designed
with the dialog editor, although only the class is shown below:

 Execution starts here
 as the application always
 shows the main window first
 Ubercode 1 class MainClass |
 |
 public callback function Main(in EventId:integer <----+
 ControlObj:control
 Key:integer
 out Cancel:boolean)
 code
 select EventId
 case LOAD_EVENT =>
 // This is the first line of code run
 ...
 case UNLOAD_EVENT => ------------------> This is the last event
 ... fired, unless the main
 end select window opened other
 end function windows that have not
 yet been closed.
 end class

In this example, main is a public window function which is automatically loaded and shown when the
program starts. Main is known as a startup window because it contains the code that runs first. The
first line of code is the Load event in the window function.

After loading and showing the main window, code in the window function runs in response to events.
For example double clicking the window runs code under the Dblclick event and changing the text in
an Edit object runs code under the Change event. The main window is able to show further modeless
and modal windows which operate as usual. The program continues running until all windows are
unloaded, then the application terminates.

By allowing main to be a window function or a normal function, it is possible to use a mixture of event
driven programming and procedural programming styles. Code that runs in response to user input is
put under the appropriate event in the window function, and more complex code that runs without
interaction is put in separate functions.

Since the program does not end until all windows are unloaded, it is possible to create a zombie
process that cannot be ended if windows hide themselves but don' t unload. This is undesirable
because the program can' t end while windows are still loaded in memory, and you can' t use the
program because its windows are hidden. The only way of ending the program is to use the operating
system to kill the process.

To avoid this, keep track of any windows that have been hidden and unload them when the program' s
main window is closed. A useful technique is for a modal window to hide itself when it is closed,
making its properties available when the call to Show that showed the window returned. If you use this
technique of hiding windows instead of unloading them, remember to unload the window after getting
the properties.

How the Owner property works

An application may consist of a top level window that manages several modeless windows displaying
similar information. This is known as an MDI application (multiple document interface) and the Owner
property is used for the top level window. An application with a top level owner window works as

Page 75
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

follows:

(1) When the top level window is minimized, all the other windows in the application are automatically
hidden. This is useful when running several applications at once, because when you want to switch to
another application you only need to minimize the top level window. You don' t need to minimize all the
modeless windows as well.

(2) The top level window is displayed behind all the other windows. This prevents it getting in the way
when you switch between the modeless windows.

(3) When the top level window is closed, the other windows are automatically unloaded. This makes it
easier when the application ends, because the user only need close the top level window. If the
modeless windows need to save information before being unloaded, they need code under the Unload
event in the window function to save their data.

The owner property is set at design time and only one window can have the property. All the other
windows in the application are owned windows which causes the effects described above. The owner
window should be the first window loaded by the application, because the owned windows expect to
find their owner when they are loaded.

How to draw graphics

Ubercode has graphics methods for drawing graphics, text and bitmaps on the printer or in a window.
When drawing in a window the graphics are drawn behind the controls so generally graphics are
drawn in a window without controls. This is not essential though and you can combine graphics and
controls in the same window for interesting visual effects.

When drawing graphics call Startprint to initialize the printer, or Startgraph if drawing on a window
background. Then call any of the graphics methods which include functions such as Drawline for lines,
Drawpicture for icons and bitmaps, and Drawtext for text. When drawing is finished call Endprint to
close the printer or Endgraph to clear the graphics from the window background.

Startgraph and Endgraph are optional when drawing on a window, because if needed they are called
automatically. However Startprint and Endprint are required when using the printer, because they
open and close the print job and display a printer progress window during the print job.

The next example shows a simple graphics program which displays a window and draws a circle in the
middle. The program uses the visual objects in the following table:

+--+
| Caption = "Graphics window" |
| Name = Main |
| Position = 100,100,120,100 |
| Typeof = Dialog |
+--+

The resource file containing these properties is shown next, followed by the main class.

Page 76
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // Graphics.rc
 MAIN DIALOG 100, 100, 120, 100
 STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
 CAPTION "Graphics window"
 BEGIN
 END

 // Graphics.cls
 Ubercode 1 class Graphics
 public callback function Main(in EventId:integer
 ControlObj:control
 Key:integer
 out Cancel:boolean)
 code
 select EventId
 case LOAD_EVENT =>
 call Startgraph(me)
 call Drawshape(me, 3, 1, 10, 10,
 GetPagewidth(me)-10, GetPageheight(me)-10)
 end select
 end function
 end class

The main class Graphics does the actual drawing. There is a single window function Main which
initializes the graphics and draws a shape under the Load event. The parameters of Drawshape
determine the shape that is drawn and its size - the second parameter specifies the shape and 3
means a circle. The Pagewidth and Pageheight properties get the size of the graphics area of the
window. All the graphics are drawn under the Load event so they are complete before the window
becomes visible (load is triggered when the window is in memory but before it is visible). The graphics
are drawn in an off screen bitmap so they are cached and refreshed from the bitmap whenever the
window needs to be redrawn.

Graphics and Window redrawing

All graphics methods (Drawtext, Drawpicture etc.) draw in an off screen bitmap which refreshes the
window when necessary. For example, the bitmap is used if the graphics window is reactivated, after
being covered by another window. Redrawing occurs when Windows regains control after processing
an event, not during each call to a graphics method. This is more efficient and avoids flickering, since
all redrawing is merged and occurs at one time. This system of drawing is internal to the graphics
system, and normally has no effect on a program.

However, this system affects graphics code that takes many seconds to run, and affects code that
mixes graphics with calls to the Delay function. The effect is the graphics appear after the event code
that called the graphics has finished running. For example:

 case DBLCLICK_EVENT =>
 call Drawtext(me, "Some text" + NL)
 call Delay(1.0)
 call Drawtext(me, "More text" + NL)
 call Delay(1.0)
 case OTHER_EVENT =>

In this example the double click event uses graphics methods to draw text, mixed with calls to Delay.
The text only appears when the event code has finished, which is after the second call to Delay. The
result is a delay of two seconds, then the two lines of text "Some text" and "More text" will both
appear. Also, if the calls to Drawtext and Delay were replaced by complex graphics that took many
seconds to run, the graphics would only appear when the event code finished.

If this causes problems, Show can be used to redraw the graphics immediately without waiting for the
event code to finish. In addition to making a window active, Show updates the window graphics from
the off screen bitmap. The example just shown could be modified by adding call Show(me,0) after
each call to Drawtext. The graphics window must be modeless for this to work, as modal windows
cannot re-show themselves.

Page 77
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

How to detect keystrokes

Programs sometimes need to detect the keys pressed in a window. For example a data base
application may use the page up and page down keys for moving through data, or a game may use
the arrow keys to control the movement of an object on the screen.

Whenever a key is pressed in a window it sends the Keypress event to the window function, so you
can put code under this event to carry out the desired actions. When the event is triggered, the
ControlObj parameter of the window function is the control object in which the key was pressed, and
the Key parameter is the actual key that was pressed. The following key constants are available:

+--+
KEY CONSTANT DESCRIPTION
KUP,KDOWN Cursor keys (up/down arrow)
KLEFT,KRIGHT Cursor keys (left/right arrow)
KCTRLA to KCTRLZ Command keys (Ctrl+A to Ctrl+Z)
KDEL Delete key
KEND End key
KENTER Enter key
KESC Escape key
KF1 to KF12 Function keys (F1 to F12)
KHOME Home key
KPGDN Page down key
KPGUP Page up key
+--+

The Active Window

The active window is the window currently being operated by the user. It is always drawn with a
highlighted caption bar. The flow of control remains in the operating system while the window is active.
The normal sequence of events is the user carries out actions in the window, the window sends any
events that were triggered to the window function which then runs code to process the event. Typically
the processing code runs quickly, taking just a few seconds, and when the processing is complete the
window function returns. This returns control to the operating system which then awaits further user
actions in the window.

This continues until the window is closed. What happens next depends on whether the window was
shown as a modal or modeless window. When a modal window is closed program execution continues
from the call to Show that activated the window. When a modeless window is closed the flow of control
remains with the operating system which activates another modeless window in the same application,
sending the events to its window function. If the last modeless window was closed there are no more
events for the application, which will terminate if there are no windows loaded.

Using Menus

Any window can have a menu attached to it. The menu is drawn as a menu bar just below the caption
bar of the window. Whenever the window is active its menu can be used, and choices made from the
menu sends a Command event to the window function.

To attach a menu to a window, use the Dialog editor to edit the window and click the Add Menu button
in the Toolbox. This starts the Menu Editor, which allows you to set the properties of the menu items,
and to arrange their order. The next example shows a program with a single window having four menu
items. The program uses the following visual objects:

Page 78
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--+
| Caption = "Menu window" |
| Name = Main |
| Position = 100,100,120,80 |
| Typeof = Dialog |
+--+
+--+
| Caption = "&Open..." |
| Name = FILE_OPEN |
| Typeof = Menuitem |
+--+
+--+
| Caption = "E&xit" |
| Name = FILE_EXIT |
| Typeof = Menuitem |
+--+
+--+
| Caption = "&1st choice" |
| Name = OTHER_CHOICE1 |
| Typeof = Menuitem |
+--+
+--+
| Caption = "&2nd choice" |
| Name = OTHER_CHOICE2 |
| Typeof = Menuitem |
+--+

The resource file containing these properties is shown next, followed by the main class.

Page 79
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // Menudemo.rc
 #define FILE_OPEN 101
 #define FILE_EXIT 102
 #define OTHER_CHOICE1 103
 #define OTHER_CHOICE2 104
 MainMenu MENU
 BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open...", FILE_OPEN
 MENUITEM "E&xit", FILE_EXIT
 END
 POPUP "&Other"
 BEGIN
 MENUITEM "&1st choice", OTHER_CHOICE1
 MENUITEM "&2nd choice", OTHER_CHOICE2
 END
 END
 MAIN DIALOG 100, 100, 120, 80
 STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
 CAPTION "Menu window"
 MENU MainMenu
 BEGIN
 END

 // Menudemo.cls
 Ubercode 1 class Menudemo
 public callback function Main(in EventId:integer
 ControlObj:control
 Key:integer
 out Cancel:boolean)
 code
 select EventId
 case COMMAND_EVENT =>
 select ControlObj
 case me.FILE_EXIT =>
 call Unload(me)
 else =>
 call Msgbox("Menu", GetCaption(ControlObj))
 end select
 end select
 end function
 end class

The main class shows a single window called Main. The main window has a menu attached with four
menu items having the properties defined previously. When the program runs, any choice made from
the menu triggers a command event which is sent to the window function. The function can tell which
choice was made by examining the ControlObj parameter of the window function. There is code under
the choices to show a short message, apart from File-Exit which calls Unload to unload the main
window and end the program.

Applications normally have more than one window, and the way a menu works depends on the
window it is attached to. A menu can be attached to a main window in which case it is available to all
modeless windows shown subsequently. A menu attached to a non-main window is available only
while the non-main window is active. These situations are discussed in more detail below.

Menu attached to main window

This is the most common situation. The application' s main window is an owner window with a menu
attached to it. As the application runs it displays one or more modeless windows. This is known as an
MDI application (multiple document interface) because the application consists of a top level window
with multiple document windows available below it. The application' s menu can be used either from
the main window or from any of the modeless windows. Whenever a menu choice is made the
command event is sent to the window function of the main window. This is shown next:

Page 80
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 ==========================*===*===*
 | X | Main Window | V | ^ | This menu can be used
 ==========================*===*===* by the main window and
 | File Help | -----> the modeless windows.
 ----------------------------------- All choices made from
 | | this menu send the
 | This is the main window. It is | Command event to the
 | modeless so it can show other | the main window
 | modeless windows. | function.
 | |
 ===================================
 | |
 | |
 V V
============================* *===*=========================*
| X | Modeless window 1 | | X | Modeless window 2 |
----------------------------- *-----------------------------*
This is a modeless window		This is a modeless window
shown by the main window.		shown by the main window.
It can be used at the same		It can be used at the same
time as the main window.		time as the main window.
============================= *=============================*

Menu attached to non-main window

Menus can also be attached to a non-main window, in which case the menu can be used only while
the window is active. An application could attach different menus to different windows but this is
unusual. When a choice is made from the menu of a non-main window the command event is sent to
the window function of the non-main window. This applies regardless of whether the non-main window
is a modeless window or a modal window. A menu attached to a non-main window is shown next:

==========================*===*===*
| X | Main Window | V | ^ |
==========================*===*===*
| |
| This is the main window. It is |
| modeless so it can show other |
| modeless windows. It may or may |
| not have its own menu attached. |
| |
===================================
 |
 |
 V
==================================*
| X | Non-main window |
==================================*
| File Help | -----> This menu can only be used
----------------------------------- when the non-main window
| | is active. All choices made
| This is a non-main window. Its | from this menu send the
| menu can only be used while the | Command event to the non-main
| window is active. | window function.
| |
===================================

2.12 Printing

Ubercode can copy text, bitmaps, graphical shapes and window images to the printer. You can use
the default printer or you can get the list of attached printers and choose which to use. The basic
sequence of code for printing is:

Page 81
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 call Startprint(printer)
 // call graphics methods for printing
 call Endprint(printer)

Startprint is called at the start of every print job to initialize the printer and to display a temporary
window that shows the progress of the print job. The temporary window is known as a printer progress
dialog. Graphics methods such as Drawtext and Drawpicture do the actual printing. Newpage can be
used to make the printer eject the current page and start a new page. Page breaks also happen
automatically if the printed data is too large to fit on a page. Finally Endprint is called to close the
printer, send the print job to the print spooler and to remove the printer progress window. Endprint
must always be called when printing is finished.

Using the default printer

The quickest way of printing is using the default printer as you don' t need code to enumerate the
connected printers and choose which to use. The default printer is the Sysprinter object. This is set up
under Windows using the command Start - Settings - Printers, then by clicking the right mouse button
on the printer you want to be the default, then by choosing "Set as Default" from the popup menu.

The following print loop shows how to print the lines array, which is assumed to be an array of strings.
The print loop starts the printer, loops through all the strings in the array and uses Drawtext to copy
each to the printer. After printing the strings it calls Endprint to close the print job:

 call Startprint(Sysprinter)
 for i from Lbound(lines) to Ubound(lines)
 exit when GetPrinterstatus(Sysprinter) /= 1
 call Drawtext(Sysprinter,lines[i])
 end for
 call Endprint(Sysprinter)

The call to Startprint initializes the printer, displays a printer progress window and disables all the
application windows to avoid re-entrancy problems while the progress window is active.

The for loop prints out all the strings in the array. The call to Printerstatus checks the printer is still
active each time round the loop, and quits the loop if Cancel is pressed in the progress window or if an
error occurred during printing. This is useful for large print jobs as it avoids repeated unnecessary calls
to Drawtext if the print job was canceled or if an error occurred, and means the application regains
control more quickly. For smaller print jobs of only a few pages, checking the printer status is
unnecessary because the print job will quickly finish regardless of whether there is an error or if the
print job is canceled.

The operating system often speeds up printing by spooling the entire print job to a temporary file, then
scheduling the printing of the file for later on. This means a print loop that copies out 10 or 20 pages
may complete in a matter of seconds, in terms of the time spent executing the program statements.

After the for loop finishes normally, or finishes because the printer status indicated an error or a
canceled print job, you must call the Endprint function. Endprint closes the printer which tells the
operating system the print job has finished spooling, also it removes the printer progress window and
re-enables any application windows that were previously disabled. Endprint must always be called
after finishing the print job, otherwise the printer progress window will not be removed.

The next example shows a complete program that prints to the default printer:

Page 82
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // Print1.cls
 Ubercode 1 class Print1

 function Printtext(in text:string[*])
 var i:integer(0:MAXINT)
 code
 call Startprint(Sysprinter)
 for i from 1 to Strcount(text)
 call Drawtext(Sysprinter, Strline(text,i))
 end for
 call Endprint(Sysprinter)
 end function

 public function main()
 var filename:string[*]
 textstr:string[*]
 code
 filename <- Openfiledialog("Print", 0, "*.txt")
 if filename /= "" then
 call Loadfile(filename, FILE_TEXT, textstr)
 call Printtext(textstr)
 end if
 end function

 end class

In this example the actual printing is done by Printtext which calls Startprint, loops through the lines of
text calling Drawtext, then calls Endprint when the printing is finished. Function main calls
Openfiledialog which prompts for the name of a text file to print, then if a name was entered Loadfile is
called to read the text file into a string. The Printtext function is then called to print the string.

Using a non default printer

A program may need to use a printer other than the default. To do this use the Printers function which
enumerates all the printers, then choose a printer to use. The Printers function is one of the iterator
functions normally used with a For each loop.

The next example shows how to do this. The most important function below is Chooseprinter which
enumerates all the printers, allows one to be selected from a list, then returns the printer object that
was selected. Function main calls Chooseprinter to select a printer and prints a short message.

Page 83
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 // Print2.cls
 Ubercode 1 class Print2

 function Chooseprinter(out result:printer)
 var prn:printer
 prnlist:string[*]
 prname:string[*]
 code
 prnlist <- ""
 for each prn in Printers()
 prnlist <- prnlist + GetName(prn) + NL
 end for
 prname <- Listbox("Print", "", prnlist)
 if prname /= "" then
 for each prn in Printers()
 if GetName(prn) = prname then
 result <- prn
 end if
 end for
 end if
 end function

 public function main()
 var prn:printer
 code
 prn <- Chooseprinter()
 if GetName(prn) /= "" then
 call Startprint(prn)
 call Drawtext(prn, "Hello printer" + NL)
 call Endprint(prn)
 end if
 end function

 end class

Chooseprinter has a single out parameter result which is the printer object selected by the user. The
returned printer object has an empty Name property if no printer was selected.

Chooseprinter first builds a list of printers using the for each iterator to enumerate all the connected
printers. The Name property obtains the printer name from the printer objects returned by the iterator.
After the printer names have been obtained they are displayed in a Listbox window which allows the
user to pick a name. If a name was picked we have to find the corresponding printer object by
enumerating all the printers with another for each loop and by storing the details of the printer object
with a matching name. Printers always have unique names so it is safe to enumerate all the
connected printers in the search.

Chooseprinter then returns the chosen printer object to function main. Main checks the returned
printer is valid by making sure it has a valid name property, then it opens the printer, writes out a short
message and closes the printer again.

Chooseprinter is a useful function to add to a utility class, because you can use it whenever the user
wants to choose a printer. Another useful function is Printtext shown in the earlier example which
copies a string to the default printer. Printtext could easily be modified to take a printer object as a
parameter instead of always using the default printer. These handy functions are shown next:

Page 84
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

 function Chooseprinter(out result:printer)
 var prn:printer
 prnlist:string[*]
 prname:string[*]
 code
 prnlist <- ""
 for each prn in Printers()
 prnlist <- prnlist + GetName(prn) + NL
 end for
 prname <- Listbox("Print", "", prnlist)
 if prname /= "" then
 for each prn in Printers()
 if GetName(prn) = prname then
 result <- prn
 end if
 end for
 end if
 end function

 function Printtext(in prn:printer text:string[*])
 var i:integer(0:MAXINT)
 code
 call Startprint(prn)
 for i from 1 to Strcount(text)
 call Drawtext(prn, Strline(text,i))
 end for
 call Endprint(prn)
 end function

Printing a window

Sometimes a program needs to print out a window as it appears on the screen. This makes it possible
for a window to have a "Print" button. To do this use Startprint to initialize the printer in the usual way,
Drawwindow which prints the image of a window and Endprint when printing has finished.

The next example shows how to print a window. The program has a multi line edit object for entering
text, a Print button that prints the window and a Close button. The program uses the visual objects in
the following table:

Page 85
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

+--+
| Caption = "Print window" |
| Name = Main |
| Position = 100,100,120,120 |
| Typeof = Dialog |
+--+
+--+
| Caption = "Type in something below:" |
| Name = Label1 |
| Position = 4,4,110,14 |
| Typeof = Label |
+--+
+--+
| Name = Edit1 |
| Multiline = 1 |
| Position = 4,18,110,74 |
| Typeof = Edit |
+--+
+--+
| Caption = "Print" |
| Name = Button1 |
| Position = 10,98,40,16 |
| Typeof = Pushbutton |
+--+
+--+
| Caption = "Close" |
| Name = Button2 |
| Position = 65,98,40,16 |
| Typeof = Pushbutton |
+--+

The resource file containing these properties is shown next, followed by the main class.

 // Print3.rc
 #define Label1 101
 #define Edit1 102
 #define Button1 103
 #define Button2 104
 MAIN DIALOG 100, 100, 120, 120
 STYLE WS_POPUP | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
 CAPTION "Print window"
 BEGIN
 LTEXT "Type in something below:",Label1,4,4,110,14
 EDITTEXT Edit1,4,18,110,74,ES_MULTILINE|ES_WANTRETURN
 PUSHBUTTON "Print",Button1,10,98,40,16,WS_TABSTOP
 DEFPUSHBUTTON "Close",Button2,65,98,40,16,WS_TABSTOP
 END

 // Print3.cls
 Ubercode 1 class Print3
 public callback function Main(in EventId:integer
 ControlObj:control
 Key:integer
 out Cancel:boolean)
 code
 select EventId
 case COMMAND_EVENT =>
 select ControlObj
 case me.Button1 =>
 call Startprint(Sysprinter)
 call Drawwindow(Sysprinter, Gethandle(me))
 call Endprint(Sysprinter)
 case me.Button2 =>
 call Unload(me)
 end select
 end select
 end function
 end class

Page 86
This "Language Report" chapter is extracted from the Ubercode Language Reference Manual

© 2005 Ubercode Software www.ubercode.com, all rights reserved

This works as follows. Function main is displayed as a window with an MLE control at the top, and with
a Print button and a Close button near the bottom of the window. When the program starts, the
window is loaded and the user can type text into the edit area and tab round the controls in the usual
way.

If the Print button is pressed this sends the Command event to the window function, with the
ControlObj parameter equal to Button1 (the Print button). This calls Startprint to initialize the default
printer, then calls Drawwindow to draw the image of the current window function (Main) onto the
printer. The keyword me is used only in window functions - it is shorthand for the name of the window,
and the Handle property returns the window handle (HWND) needed for printing the window.
Drawwindow has a HWND argument which specifies the window to be printed, which allows you to
print windows from other applications if you know the window handle. After the window is printed,
Endprint is called to close the printer and finish the print job.

Finally when the Close button is pressed this sends a Command event with the ControlObj parameter
equal to Button2. This calls Unload to unload the main window, after which the program has no
windows left in memory and will end.

