

Learning Ubercode TM

Describes how to install Ubercode and how
to write Ubercode programs

 2

 3

Contents

1. GETTING STARTED... 5

1.1 WHAT IS IN THE PACKAGE? ...5
1.2 HOW TO INSTALL UBERCODE..6
1.3 CONTACT DETAILS..6

2. WRITING YOUR FIRST PROGRAM........................ 7

2.1 TYPE IN THE PROGRAM..7
2.2 HOW IT WORKS ..8

3. LEARNING TO PROGRAM 11

3.1 COMPUTERS.. 11
3.2 COMPILERS... 13
3.3 PROGRAMS... 16

4. PRACTICAL PROGRAMMING............................... 19

4.1 'AVERAGES' PROGRAM.. 19
4.2 'READ TEXT' PROGRAM...23
4.3 'PRINT1' PROGRAM.. 24

5. TESTING AND DEBUGGING 27

5.1 TYPES OF ERROR.. 27
5.2 BUGSLAYER IN ACTION...29
5.3 GETTING EXTRA HELP .. 35

6. REFERENCE .. 37

6.1 TECHNICAL SPECIFICATIONS... 37
6.2 GLOSSARY.. 39
6.3 ASCII CODE TABLE... 41

 4

"Learning to Program" Manual Copyright (c) Ubercode Software 1997-2015,

all rights reserved. The Ubercode Computer Language and its associated
software is Copyright (c) Ubercode Software 1997-2015, all rights reserved.

Microsoft and Windows are trademarks of Microsoft Corporation. Pentium
is a trademark of Intel Corporation. Ubercode is a trademark of Ubercode
Software in various jurisdictions. All other trademarks are the property of

their respective companies. Document: learning-to-program.doc

www.ubercode.com

 5

1. Getting Started
Welcome to the "Learning to Program" manual. This manual
applies to Version 1 of the Ubercode™ computer language
released in 2008. This part of the manual explains how to install
Ubercode.

1.1 What is in the Package?
Your copy of Ubercode includes the documentation and
software in the list below. Also check your computer meets the
system requirements before installing.

Package Contents
• Developer Environment with Debugger and Compiler.
• "Learning to Program" Manual (this manual).
• Language Reference Manual (may be on disk).
• Comprehensive on-line help.
• Run Time Library source code.
• Developer Environment source code.
• Over 250 example programs (on disk and in Help files).
• Useful icons and bitmaps.
• Custom Control source code.

System Requirements
• PC with Pentium® processor (or compatible).
• 64 MB memory or higher.
• Microsoft® Windows™ XP, 2000, NT4, ME, 98 or 95.
• VGA or higher resolution screen.
• 50 MB of free disk space.
• CD-ROM, DVD-ROM or access to CD-ROM over a

network.

 6

• Mouse or other pointing device.

1.2 How to Install Ubercode
• Put the CD into a CD-ROM or DVD-ROM drive.
• The installer should start automatically. If it does not, click

Start – Run, and type d:setup in the 'Run' window. The
letter d: is your CD-ROM drive.

• Confirm whether you accept the license agreement, then
choose the directory where Ubercode is installed.

• When the installation is complete there will be a new menu
group "Start - Programs - Ubercode". Also the Ubercode
icon is shown on the desktop.

The Start - Programs - Ubercode menu has commands to start
the Developer Environment, and to open the Help file. There
may also be menu options to view the installation notes and
other information.

1.3 Contact Details
Ubercode is developed by www.ubercode.com, trading as
Ubercode Software. We can be contacted at:

• Email - info@ubercode.com
• Website - www.ubercode.com
• Technical support - www.ubercode.com/support

 7

2. Writing your first program
After installing Ubercode you can write a program and compile
it to an EXE file. These steps tell you what to do:

2.1 Type in the program
1. Start the Developer Environment by double clicking its icon.
The icon is on the desktop.

2. After starting the Developer Environment, the Startup
Wizard should appear. Choose "New Text File" and click OK.
If the wizard did not appear, wait for the main menu and
choose File - New - Text File.

3. Type in the following program. You can use upper or lower
case, and you can change the spacing if you want. But don't put
spaces in the middle of words. Here's the program:

Ubercode 1 class Myfirst

public function main()
var
 MyName:string[*]
code
 MyName <- Inputbox("Myfirst", "What is your name? ")
 call Msgbox("Hello "+MyName+"!")
end function

end class

The program has two commands, the Inputbox and Msgbox
commands on the lines indented to the right. The Inputbox asks
for your name, and the Msgbox (message box) prints out a
greeting message. The program is explained in more detail in
the next section "How it Works".

 8

4. Now save the program using the File-Save As command.
Save the file as c:\program files\ Ubercode\ programs\ myfirst.
The Developer Environment prompts you with the correct
filename.

5. Now compile the program, using the "Run - Compile this
Class" menu command. Wait a few moments for the compiler
to finish.

6. If you typed the program as shown it will compile without
errors. If there were errors the error message gives the line
number of the error, so go to this point and check the code.
Check you are typing the double quote character around the
strings. You cannot type a single quote twice.

7. After the program successfully compiled run it with the "Run
- Start" menu command. The program will show the Inputbox
window that asks for your name. Type in something and click
the OK button. Then the Msgbox window will show the name.
Click OK to close the Msgbox and finish the program.

8. You can now call yourself a programmer as you've
successfully installed Ubercode and compiled your first
program! This exercise is useful because it also checks
everything is installed properly.

2.2 How it Works
You've typed in a program, saved it to disk, compiled it and run
it. The program is a list of commands that is understood by the
computer. Commands use English words such as function,
Inputbox, end function, and symbols such as the plus sign for
joining up string text. The compiler converts these commands

 9

to an EXE file. When you run the program, the computer loads
the EXE file and runs the commands.

Although the program uses commands in English, it follows a
clearly defined structure. This is the syntax, and the compiler
checks the syntax when it makes the EXE file. If the syntax is
wrong, you get a list of errors instead of an EXE file. At the
start this may seem a pain, but it's actually a great benefit. If
you sell software it means the compiler finds the errors, instead
of leaving them in the EXE file for your customers!

The easiest way of learning syntax is to move the cursor onto a
command and press the F1 key. The resulting help page
includes a description and a simple example.

To understand the syntax of the first program, note it consists of
an outer part (the very start and end of the program) and an
inner part (everything else). Here is the outer part:

Ubercode 1 class ClassName
 ...
end class

The command Ubercode 1 class ClassName always goes at the
start of a program. You choose the ClassName as the name of
the program, and classes correspond to files, because each class
is stored in a single file. Classes always end with end class so
the compiler knows where to stop.

The rest of the program contains the functions. These carry out
the tasks of the program, and this program contains one
function:

public function main()
var

 10

 MyName:string[*]
code
 MyName <- Inputbox("Myfirst", "What is your name? ")
 call Msgbox("Hello "+MyName+"!")
end function

The function is called public function main() and the name
main is special because it makes the class into a main class. A
main class can be compiled directly to an EXE file, and when
the EXE file starts running, the program starts at main. The
keyword public just before function main() ensures main() can
be called up from outside the class.

The var keyword is followed by the memory variables of the
program. These store values when the program runs. There is a
string variable called MyName, which stores text.

The code command starts the actual code that runs when the
function starts. Code runs in order down the page. Therefore the
Inputbox command gets the name, then the Msgbox command
shows the name in a separate window.

Programs can have many functions, and functions can have
many commands. The section on "Practical Programming" has
examples of more powerful programs.

 11

3. Learning to Program
This chapter is for people who are new to programming. There
is a widely held view that programming is very complicated.
This is not correct - programming is as simple or as
complicated as the programming software you use, and
Ubercode has been designed to be as simple as possible.

Most of the complex features in languages such as C++, Java
and Visual Basic are unnecessary and have been left out from
Ubercode. Modern computers have enough power to automate
the tedious detail in earlier languages. Ubercode programmers
never have to worry about memory leaks, file handles, invalid
pointers, parameter aliasing, header files, pre-processors and
macros, DLL compatibilities, framework versions, or Windows
API differences between versions.

The rest of this chapter shows the basics of how a computer
works and how programs work.

3.1 Computers
The next diagram shows the most important parts of a
computer. It applies to nearly all computers made in the last 30
years:

 12

DISK

SCREEN

 MAIN BOARD

 RAM RAM
 CPU

Main board. This is an electronic printed circuit board
containing the main components.

RAM. This stands for Random Access Memory, which stores
running programs and program variables. The contents of RAM
are lost when the computer is switched off.

Disk. This is magnetic storage, used for programs, files,
databases and documents. Unlike RAM, the disk keeps its
contents when the power is switched off. The small icons in the
disk above represent programs.

Programs. These contain instructions to be carried out by the
CPU. When stored on disk, they are known as applications,
EXE files or software. When loaded into memory, they are
known as processes, since the CPU is processing them.

 13

CPU. This is the Central Processing Unit. It moves data from
one place to another, and does calculations on the data stored in
memory. CPUs (also known as microprocessors) are highly
complex integrated circuits containing tens of millions of
transistors. Typical CPUs are the Intel Pentium® and the AMD
Athlon®.

Screen, Keyboard. These interact with programs through the
CPU. Other peripherals such as the mouse, sound cards,
printers, network adapters etc are common.

Notice that programs are at the heart of the computer.
Everything you see on the screen is the result of a program.
Microsoft Windows, Microsoft Office, MS-DOS, Unix, games,
and accounting software are all just programs that run on the
computer. Without programs, a computer is just an expensive
pile of electronics. Therefore it's important to understand how
programs are made.

3.2 Compilers
From the previous diagram, you saw that programs are stored
on disk as EXE (executable) files. When they are run, programs
are loaded into memory and processed by the CPU. Inside the
computer, the program always exists as binary. Binary is a
counting system using base 2, where the only digits allowed are
'0' and '1'. This differs from the normal decimal system using
base 10, where the digits '0' to '9' are allowed.

You don't need to understand binary to program a computer.
But the computer has to use binary because its circuits can only
store a '0' or '1'. 0 volts indicate '0', and 3.3 or 5 volts indicate
'1'. Everything in the computer's memory and disk storage uses
binary (the disk uses magnetism instead of voltage).

 14

Programming in binary is very complex, for example the
following is part of a program that copies a short message to the
screen:

1011 1010 0010 0000 0000 0000
1011 0100 0000 1001
1100 1101 0010 0001

Programmers prefer English text to binary; therefore they need
a system to convert written text into binary. This is done using a
program called a compiler. The compiler processes the written
text commands and produces equivalent binary code. For
example the compiler converts the command PRINT "Hello
world" into binary code, then stores the binary in an EXE file.
The binary code tells the CPU to copy "Hello World" to the
screen. The next diagram shows this:

Understanding this diagram is an important step to
understanding programming. Programmers use written text
because binary is too complex. The computer only understands

 15

binary because that's how the electronics work. The compiler
converts the text commands into the binary equivalent. All
computer languages and software development packages follow
this process.

Although compilers are sophisticated, they are not all-powerful.
For example "Write me an accounting program" is too vague.
Instead, compilers understand a strictly limited set of
commands. The set of commands is a computer language, and
each language has its own syntax. In effect the compiler
promises "if you give me a valid program, I'll convert it into
binary for you".

Compilers are internally designed to process a single language,
and to generate binary code for one type of computer. When
talking about compilers, you need to specify the language and
the type of computer. For example Microsoft C++ converts C++
code into binary for Windows. Languages with compilers
include C, C++ and Java (powerful but very complex), and
different versions of Basic.

Basic was invented in 1964 as a simple and powerful language.
After Windows became popular Visual Basic and VB.NET
replaced Basic, but these modern versions are nearly as
complex as C++.

IBM invented the first compiler in the 1950s, and the first
computer language was Fortran. The invention of compilers and
languages is the reason for the improvements in computers and
software since the 1950s.

 16

3.3 Programs
We've just seen how compilers are essential when writing
programs. They allow programmers to use words and symbols
instead of '1's and '0's. The following diagram shows the
(idealized) approach used by programmers:

(3) Compile the
program and test the

binary code

(2) Write the program
as text (source code)

(1) Decide what the
program should do

In step (1), decide what the program does. This is not an
elaborate description, for a small program it should be just a
few sentences. Time spent on the description is repaid when
testing and debugging. This information can go at the top of the
program, in the form of a comment, so it won't get lost. The
only time descriptions need to be separate is when they are
reviewed as a separate document.

In step (2), write the actual program using the language
processed by the compiler. In this form, the program is known
as source code.

 17

In step (3), compile the program and test the binary code. If the
program had syntax errors or used unrecognized commands, the
compiler cannot create the binary code and will show an error
message instead. Errors must be fixed, so go back to step (2)
and modify the source code.

This process is the " Edit - Compile - Run" cycle and is
common to all types of programming. Modern languages hide
the details behind elaborate interfaces and fancy terminology,
but the basics are the same.

 18

 19

4. Practical Programming
The programs in this chapter show useful programming tasks,
such as finding averages of numbers, reading in text, and
printing. All the examples should compile and run without error
- also they assume you've installed Ubercode. If not, follow the
instructions in Chapter One.

4.1 'Averages' program
The 'Averages' program inputs one or more numbers, and then
shows the average. The program shows an error message if the
inputs are invalid.

Write the source code
The easiest way of writing the program is by typing directly into
the Developer Environment. Start the Developer Environment,
and then press Ctrl+N for a new text file. Or you can load the
c:\program files\ Ubercode\ examples\ math1\ averages.cls
file.

The first step is to write a function that finds the average of one
or more numbers. Type in the following function:

function Average(in a:Tnumbers[*:*] out av:real)
var
 i:integer(0:MAXINT)
 total:real(0:MAXINT)
code
 av <- -1.0
 if Ubound(a) > 0 then
 for i from Lbound(a) to Ubound(a)
 total <- total + a[i]
 end for
 av <- total / (Ubound(a)-Lbound(a)+1)
 end if
end function

 20

Next, we need a routine to read in one or more integers and
return them as an array. The integers are returned in an array
sized from 1 to the number of integers. If the integers are
incorrect or nothing is entered, the returned array has the
dimensions (-1,-1):

function GetNumbers(out a:Tnumbers[*:*])
var
 InputStr:string[*]
 OK:boolean
code
 InputStr <- Inputbox("Averages", "Enter Numbers")
 call Val(InputStr, a, OK)
 if not OK then
 call Redim(-1, -1, a)
 end if
end function

Next, there is a public function main that calls the other
functions. The function is called main to make sure it runs first,
and it is public to make it available outside the class. The main
function detects an error by checking for av = -1.0. This will
happen if nothing was entered, or if text was entered instead of
integers. If the average was calculated correctly, it is displayed:

public function main()
var
 av:real(0:MAXINT)
code
 av <- Average(GetNumbers())
 if av = -1.0 then
 call Msgbox("No inputs")
 else
 call Msgbox("Average="+Str(Fix(av)))
 end if
end function

These three functions (Average, GetNumbers, Main) form the
main part of the program. We have to write a main class

 21

(equivalent to a program) using these functions. Also we
declare a type that stores an array of integers. Here is the main
class (the italics represent the functions you just typed):

Ubercode 1 class averages

type Tnumbers[*:*]:array[*:*] of integer(0:MAXINT)

function Average...

function GetNumbers...

public function main...

end class

That completes the program. If you've just typed it in, save it
and print it if possible. The entire program should read:

// The "Averages" program inputs one or more
// numbers, then shows the average. The
// program shows an error message if the
// inputs are invalid.
Ubercode 1 class averages

type Tnumbers[*:*]:array[*:*] of integer(0:MAXINT)

function Average(in a:Tnumbers[*:*] out av:real)
var
 i:integer(0:MAXINT)
 total:real(0:MAXINT)
code
 av <- -1.0
 if Ubound(a) > 0 then
 for i from Lbound(a) to Ubound(a)
 total <- total + a[i]
 end for
 av <- total / (Ubound(a)-Lbound(a)+1)
 end if
end function

function GetNumbers(out a:Tnumbers[*:*])

 22

var
 InputStr:string[*]
 OK:boolean
code
 InputStr <- Inputbox("Averages", "Enter Numbers")
 call Val(InputStr, a, OK)
 if not OK then
 call Redim(-1, -1, a)
 end if
end function

public function main()
var
 av:real(0:MAXINT)
code
 av <- Average(GetNumbers())
 if av = -1.0 then
 call Msgbox("No inputs")
 else
 call Msgbox("Average="+Str(Fix(av)))
 end if
end function

end class

At this point the program exists as a source code file on disk,
and you could come back tomorrow and it would still be there.
But the program can't run yet, since it doesn't exist as binary.
The next step creates the binary code.

Compile the program
The compiler converts the program into binary code. Press the
compile button and wait for the compiler to finish. If there
are any errors check your program against the printout and re-
compile it. After it compiled successfully, press the Run
button. This loads the binary code into memory and makes the
CPU process the binary code.

 23

The windows and calculations that occur now are done by the
binary code of your program. Enter some numbers (for example
30 40 50) and check the result:

Click OK to close the program.

This example shows the "Edit - Compile - Run" cycle in action.
You described the program with a comment at the top; you
typed it in and compiled it. You fixed the errors, then ran it and
tested it. The result is an EXE file that could be copied and run
on any Windows computer anywhere in the world.

4.2 'Read Text' program
This program shows how to read in a text file. It prompts you
for a file name, then it displays the file in a Listbox. Type in the
source code as shown, or load the c:\program files\ Ubercode\
examples\ files1\ files1.cls file:

Ubercode 1 class files1

public function main()
var
 filename:string[*]
 textstring:string[*]
code
 filename <- Openfiledialog("Read Text", 0, "*.txt ")
 if filename /= "" then
 call Loadfile(filename, FILE_TEXT, textstring)
 call Listbox("Read Text File", "", textstring)

 24

 end if
end function
end class

When the program starts running, Windows calls public
function main() as the first function. Main declares two local
variables, filename and textstring. The filename stores the name
of the text file and textstring stores the text loaded from the file.

The Openfiledialog command in main prompts you for the file
name. This is returned in the filename variable, unless you press
Cancel in the dialog box in which case filename returns an
empty string. The program then tests filename to make sure you
did enter a name, and then it calls Loadfile to load the text file
into the string variable textstring. Textstring stores the actual
text of the file.

Finally the Listbox command displays the text string in a
scrolling list. After viewing the text, click OK to end the
program.

To run the example, first type it in and save it, or load the
example. Then compile it, wait for the compiler to finish, and
run it.

4.3 'Print1' Program
This program shows how to copy text to the printer. Type in the
class shown below, or load the c:\program files\ Ubercode\
examples\ print1\ print1.cls file:

Ubercode 1 class print1

private function Printme(in text:string[*])
var
 count:integer(0:MAXINT)

 25

code
 call Startprint(Sysprinter)
 call SetFontname(Sysprinter, "Times New Roman")
 call SetFontsize(Sysprinter, 14)
 call SetFontitalic(Sysprinter, True)
 for count from 1 to Strcount(text)
 call Drawtext(Sysprinter, Strline(text,count))
 end for
 call Endprint(Sysprinter)
end function

public function main()
var
 poem:string[*]
code
 poem <- "Roses are red" + NL +
 "Violets are blue" + NL +
 "Some poems rhyme" + NL +
 "But this one doesn't." + NL
 call Printme(poem)
end function
end class

The program works as follows. The code that does the printing
is put in a separate function Printme to make the program easier
to understand. In general function main should contain as little
code as possible, to make it easier to change the program as it
develops. The most important lines in function Printme are:

 call Startprint(Sysprinter)
 call Drawtext(Sysprinter, text)
 call Endprint(Sysprinter)

Startprint initializes the printer and displays a window that
shows the printer's progress. Drawtext copies some text to the
printer, moving down to the next line if text ends with a new
line character (the NL character). You could call any drawing
routine here, such as Drawpicture etc, but this program keeps
to printing text for now. Finally Endprint closes the printer and
removes the printer progress window.

 26

As you can see from the code, function Printme works by
calling Startprint, then sets a more interesting font which is
Times New Roman 14 point italic, then sets up a loop to get
each line of the string and calls Drawtext. When Printme has
looped through all the lines in the text string, it calls Endprint.
You could easily include Printme in other programs as a routine
for printing text.

The printer used by Printme is Sysprinter, which is the system
default printer. This is set up under Windows by Start - Settings
- Printers, then right-clicking on the printer you want to use as
the default.

Moving on to function main, this makes up a string containing
a short poem, then it calls Printme to print the text.

After typing in the class or loading it from the file, you can run
it. Compile the program first, wait for the compiler to finish,
then run it.

 27

5. Testing and Debugging
This section describes how to fix errors. Errors can happen
when compiling a program, when running it or if it produces
wrong output.

5.1 Types of Error

Compile time errors
Compile time errors are caused by a class that has incorrect
syntax or that uses language commands incorrectly. The
compiler detects the error, and after it finishes, the Developer
Environment shows a window with all the errors. You must fix
all compile time errors before running a program.

To fix the error change the class source code near the line of the
error. The error message includes the class name and the line of
source code that was wrong; also it includes the error number
and a hint to explain the error.

Click on the error description and press the F1 key to read more
details on the error. Also you can double click the error
description to jump to the line of the error.

Run time errors
These occur if a running program has a problem that prevents it
continuing, such as not enough memory, missing files, or
reading and writing outside the limits of an array. When a run
time error takes place the program displays a message and
stops. The message includes the error number, class name and
line number of where the error happened.

 28

To fix run time errors use the Developer Environment to load
the class that caused the error, and go to the line of code that
went wrong. You can get help on the error by searching the
help system for the error number.

If it's not clear what caused the error run the program under the
debugger. Use the Tools - Options - Compiler command to
bring up the compiler options dialog. Click on "Full
Debugging", then click OK to close the dialog. Now recompile
the application using the Run - Full Rebuild EXE File
command. After it has compiled use the Run - Start command
to run the program.

When the program starts use the same commands that caused
the error previously. This time instead of seeing an error
message, the debugger pops up at the point of the error. Use the
Watch button to look at the values of variables, or the Call stack
button to see the sequence of calls by which the program
reached the error. By checking the values are correct and seeing
if the program flow took the correct path, you can see where the
error is. Use the debugger to halt the program, edit the source
code and recompile the program.

Logic errors
These are errors in a running program that do not cause a run
time error, but instead the program produces incorrect output or
gets stuck in a loop.

To fix these, use the Run - Start in Debugger command. When
the debugger starts, put breakpoints near where the program
started to go wrong, and in other places you're not sure about.
After setting the breakpoints, click on "Run" and wait for a
breakpoint. When it reaches a breakpoint, step through code

 29

and use the "View Watches" and "View Calls" buttons to check
the program is running as you expect. Again you need to make
sure program values are correct and the program is taking the
correct path.

After checking the code you may see the error, or have some
idea of extra code to improve the program logic. Halt the
program, edit the source code and recompile again. This is the
"Edit - Compile - Run" cycle.

5.2 Bugslayer in Action
After all this theory it's time to catch some bugs. The following
class is intended to print out the squares of the numbers 1 to 10,
but it has some bugs. Type in the class as shown below, or load
it from c:\program files\ Ubercode\ examples\ bugcity\
bugcity.cls. The class below includes the bugs, but if you can
see them don't fix them yet!

1. Ubercode 1 class Bugcity
2.
3. type
4. NumArray[*:*]:array[*:*] of integer(0:MAXINT)
5.
6. public function main
7. var squares:NumArray[*:*]
8. code
9. result <- Str(squares)
10. call CalcSquares(squares)
11. call Msgbox(result)
12. end function
13.
14. function CalcSquares(in squares:NumArray[*:*])
15. var count:integer(0:MAXINT)
16. code
17. for count from 1 to 10
18. squares[count] <- Sqr(count)
19. end for
20. end function

 30

21.
22. end class

Save the class, then compile it. There should be a nasty
outbreak of compile time bugs as follows:

1. bugcity.cls(7): Error 2002 : Unexpected symbol. Var is an

unexpected symbol here because main is a function name
and should be followed by round brackets.

2. bugcity.cls(9): Error 2561 : Identifier is not declared. Result
should be declared as a string variable here. All identifiers
must be declared in Ubercode.

3. bugcity.cls(10): Error 2561 : Identifier is not declared. The
CalcSquares function is not declared. This error is more
subtle because the function is in the class, but it is after
function main. To fix this error we have to put a public
prototype (function header) of CalcSquares before function
main. Also if CalcSquares is declared using a function
prototype, any types it uses (NumArray) must also be
declared public.

4. bugcity.cls(11): Error 2561 : Identifier is not declared. Again
this is the undeclared result variable we know about.

5. bugcity.cls(18): Error 2530 : Identifier is not allowed here.
The squares array cannot be used as a left hand value
because it is an in parameter which is not modifiable. To fix
this squares has to be changed to an inout parameter.

6. bugcity.cls: Error 2607 : Function main is not declared
properly. This is another message that happens because
main was not followed by round brackets.

 31

To get help look up the error number in the on-line help system.
The comments in italics above describe how to fix the errors, so
make changes as described. The corrected class should look like
this with the changes shown in bold (note the round brackets
after main):

Ubercode 1 class Bugcity2

public type
 NumArray[*:*]:array[*:*] of integer(0:MAXINT)

public function CalcSquares
 (inout squares:NumArray[*:*])

public function main ()
var squares:NumArray[*:*]
 result:string[*]
code
 result <- Str(squares)
 call CalcSquares(squares)
 call Msgbox(result)
end function

public function CalcSquares
 (inout squares:NumArray[*:*])
var count:integer(0:MAXINT)
code
 for count from 1 to 10
 squares[count] <- Sqr(count)
 end for
end function
end class

The type NumArray and function CalcSquares have been
moved to before function main, so they are in scope. The first
occurrence of CalcSquares is called a prototype, because it
consists of just the function header. Prototypes, and types used
by prototypes, must be public, therefore NumArray and
CalcSquares use public in their declaration.

 32

Also we have added the empty parameter list following main,
and we have declared the result string. After making these
changes the compile time errors are fixed and we can compile
the class successfully.

But after compiling Bugcity and running it we get the following
run time error (the line number may vary slightly):

This error happens on the following line in CalcSquares:

 squares[count] <- Sqr(count)

because the array reference count is outside the array bounds.
Note the array is indexed from 1 to 10, but the array squares
passed to CalcSquares from main was declared in main as a
resizable array (using [*:*] notation):

 var squares:NumArray[*:*]

Because squares does not have bounds 1 to 10, this causes the
array reference error. To fix the bug change the declaration of
squares so it has bounds of 1 to 10, as follows:

 var squares:NumArray[1:10]

 33

Then recompile the program and re-run it. Now the program
will run without a run time error but instead of printing the
correct values, it shows the following:

The number zero is printed ten times, instead of the squares of
1 to 10. This is a logic error, because the program compiles and
runs without crashing, but the results are not as expected.

The debugger is useful for fixing logic errors. Use the Tools -
Options - Compiler command, click next to "Full debugging"
and click OK. Then use "Run - Start in Debugger" to recompile
the program and start the debugger at function main. Now we
want to find why the squares array is full of zeros. By looking
at the code we can see that when CalcSquares returns, the array
should have the correct values. If we run the program to this
point we can check the array. Put a breakpoint on the line:

 call Msgbox(result)

which is the line of code after CalcSquares returns. To set the
breakpoint, double-click the line of code in the debugger. Then
click the "Run" button to run the program. When the debugger
comes active again, click the "View Watches" button to see
whether CalcSquares did its job. You should see the following
in the Watches window:

 34

Very interesting! It shows the squares array contained the
correct values all the time, but it was the result string that is
wrong. Look at the code in main and notice that we are
converting squares to the result string before calculating the
array values. To fix this move Str(squares) to after the call to
CalcSquares. After fixing the error main should look like this:

public function main()
var squares:NumArray[1:10]
 result:string[*]
code
 call CalcSquares(squares)
 result <- Str(squares)
 call Msgbox(result)
end function

Halt the debugger, make the changes and recompile and re-run
the program, and click Run when the debugger starts up. Now
you should finally see the program working properly, and it
should show the following:

To make sure the fix worked, put back the breakpoint after the
call to CalcSquares and check both squares and result have the
correct values. After fixing logical errors, it's a good idea to re-
run the debugger and make sure the fix has worked.

 35

5.3 Getting Extra Help
When dealing with errors, use the on-line help. Activate help
from the Developer Environment using the Help - Contents
command, then in the Help window click the "Index" button
and type in the error number. This works for compile time and
run time errors.

The on-line help is also useful if you're having problems with a
particular command. Look up the command in the help system,
as all the language commands have an example program that
shows the correct usage.

If none of the above help, use the Technical Support website
www.ubercode.com/support , or refer to the contact details
in the Introduction to this manual.

 36

 37

6. Reference
This section includes the Technical Specifications of Ubercode,
a glossary of terms and an ASCII table.

6.1 Technical Specifications

Developer Environment
• Produces standard Windows applications (EXE files)
• EXE files run under all supported versions of Windows
• Source code is stored in classes
• Window layout editor and Integrated Debugger
• Compiles single and multi class applications
• Supports Windows XP, 2000, NT4, ME, 98, 95
• Automatic DLL versioning

Control Flow
• Structured control flow (if, else, end if)
• Multi-way control flow (select, case, end select)
• Loops (for, while, loop, exit when, end loop)
• Data file access (for each, iterate)
• Classes, functions and interfaces
• Event driven code with callbacks

File Types
• DBF (dbase), XML and CSV for database applications
• ICO and BMP files for images
• TXT files
• INI files for configuration data
• WAV files for multimedia
• HLP files for Windows help

 38

• RC and DLG files for window layouts
• Free-format binary files for general applications

Data Types
• Logical values (true, false)
• Integers, fixed point and floating point numbers
• Fixed and variable length text strings
• Records (user defined types)
• Sets of integers and Safe Arrays
• Lists and tables (in memory and for file access)
• Abstract Data Types (for Object Oriented Programming)

Visual Object Types
• Edit object (single and multi line)
• Radio buttons, Check boxes (for selecting options)
• Push buttons and Bitmap buttons
• Scroll bars and Progress bars (changing and displaying

values)
• Combo box, List box and List box with icons
• Pictures and Icons (BMP or ICO format)
• Group box, Label text
• Shapes (coloured borders and interior)
• Menus, Clipboard, Printer, Screen

Window Types
• Message box, Input box, List box
• Dialog box object
• Scrolling Edit window object
• Common dialogs (Open, Save As, Print, Font, Color)

 39

6.2 Glossary
Array. An array is a variable that stores one or more items of
the same type.

Boolean. A data type that is able to store True or False values.

Compiler. This converts Ubercode classes into EXE files and
is called automatically from the Developer Environment. You
can also call it up directly, to compile classes without using the
Developer Environment.

Debugger. This is an add-on component of the Developer
Environment. It monitors programs when they run, and allows
you to step through them line by line using a graphical
interface.

Developer Environment. An application used by software
developers, which allows you to type in, edit, print, run and test
programs, then convert them into EXE files.

Dialog box. A dialog box (also known as a Form, or a
Window) is a rectangular area on the screen with control objects
for entering or displaying data. Controls include push buttons,
scroll bars and more.

Dialog editor. This is a graphical editor for designing dialog
boxes. It lets you add controls, move them to different places,
and set their properties. The Ubercode Developer Environment
includes a dialog editor. Dialog editors are also called Form
editors, Resource editors, or Layout managers.

Inputbox. A modal dialog used for inputting a string.

 40

Integer. A data type which stores numbers without fractional
parts.

Iterator. An iterator is a loop which processes all the items in a
list or table. Refer to the For each or Iterate command in the
help file.

Listbox. A listbox is a scrolling list of items on the screen.
Listboxes may also contain small pictures to the left of the text.
Refer to the Iconlist object in the help file.

Loadfile. A command which reads in an entire file using a
single instruction.

Modal window. When a modal window is active, it locks out
all other windows in your application, although you can still
switch to other applications. The Show method is used for
displaying modal and modeless windows, and IsModal tests
whether a window is modal.

Modeless window. When a modeless window is active, you
can switch to other windows in your application by clicking on
them. When different windows in your application are
activated, they trigger events that run code in your program.

Msgbox. A modal dialog used for displaying a string and some
push buttons. The string can have multiple lines, also you get to
choose the push button labels.

Openfiledialog. A modal dialog provided by Microsoft for
opening files. The Openfiledialog allows you to change to
different directories, and to choose one or more files.

 41

Parameters. When inside a function, this is the name given to
the function's in, inout and out parameters.

Postcondition. This applies to a function and is an expression
using the function's parameters which is tested just before the
function returns. It checks the function produces correct
outputs.

Precondition. This applies to a function and is an expression
using the function's parameters which is tested just before
calling the function. It checks the function is passed correct
inputs whenever called.

Resource editor. See dialog editor.

String. This is a very useful data type that stores text. Strings
can also store multiple lines of text using the new-line (NL)
character as an end-of-line marker.

6.3 ASCII code table
The next table shows the ASCII character set. Dec and Hex are
the ASCII value and Chr is the corresponding character. If no
character is shown, there is no printable ASCII value. The
character denoted SP indicates a space, and Cur denotes the
national currency symbol.

 42

Dec Hex Chr Dec Hex Chr Dec Hex Chr Dec Hex Chr

0 0 32 20 SP 64 40 @ 96 60 `
1 1 33 21 ! 65 41 A 97 61 a
2 2 34 22 " 66 42 B 98 62 b
3 3 35 23 # 67 43 C 99 63 c
4 4 36 24 Cu 68 44 D 10 64 d
5 5 37 25 % 69 45 E 10 65 e
6 6 38 26 & 70 46 F 10 66 f
7 7 39 27 ' 71 47 G 10 67 g
8 8 40 28 (72 48 H 10 68 h
9 9 41 29) 73 49 I 10 69 i
10 A 42 2A * 74 4A J 10 6A j
11 B 43 2B + 75 4B K 10 6B k
12 C 44 2C , 76 4C L 10 6C l
13 D 45 2D - 77 4D M 10 6D m
14 E 46 2E . 78 4E N 11 6E n
15 F 47 2F / 79 4F O 11 6F o
16 10 48 30 0 80 50 P 11 70 p
17 11 49 31 1 81 51 Q 11 71 q
18 12 50 32 2 82 52 R 11 72 r
19 13 51 33 3 83 53 S 11 73 s
20 14 52 34 4 84 54 T 11 74 t
21 15 53 35 5 85 55 U 11 75 u
22 16 54 36 6 86 56 V 11 76 v
23 17 55 37 7 87 57 W 11 77 w
24 18 56 38 8 88 58 X 12 78 x
25 19 57 39 9 89 59 Y 12 79 y
26 1A 58 3A : 90 5A Z 12 7A z
27 1B 59 3B ; 91 5B [12 7B {
28 1C 60 3C < 92 5C \ 12 7C |
29 1D 61 3D = 93 5D] 12 7D }
30 1E 62 3E > 94 5E ^ 12 7E ~
31 1F 63 3F ? 95 5F _ 12 7F

 43

